Convolution of beta prime distribution

We establish some identities in law for the convolution of a beta prime distribution with itself, involving the square root of beta distributions. The proof of these identities relies on transformations on generalized hypergeometric series obtained via Appell series of the first kind and Thomae’s re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2023-02, Vol.376 (2), p.855-890
Hauptverfasser: Ferreira, Rui A. C., Simon, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We establish some identities in law for the convolution of a beta prime distribution with itself, involving the square root of beta distributions. The proof of these identities relies on transformations on generalized hypergeometric series obtained via Appell series of the first kind and Thomae’s relationships for {}_3F_2(1). Using a self-decomposability argument, the identities are applied to derive complete monotonicity properties for quotients of confluent hypergeometric functions having a doubling character. By means of probability, we also obtain a simple proof of Turán’s inequality for the parabolic cylinder function and the confluent hypergeometric function of the second kind. The case of Mill’s ratio is discussed in detail.
ISSN:0002-9947
1088-6850
DOI:10.1090/tran/8748