Joint assimilation of satellite soil moisture and streamflow data for the hydrological application of a two-dimensional shallow water model
•Data assimilation into a fully-distributed 2D-SWE model.•Joint assimilation of satellite-derived soil moisture and observed discharge.•Data assimilation using a Particle Filter-based approach.•The proposed method works better in events with isolated peaks of discharge.•In terms of discharge, an ave...
Gespeichert in:
Veröffentlicht in: | Journal of hydrology (Amsterdam) 2023-06, Vol.621, p.129667, Article 129667 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •Data assimilation into a fully-distributed 2D-SWE model.•Joint assimilation of satellite-derived soil moisture and observed discharge.•Data assimilation using a Particle Filter-based approach.•The proposed method works better in events with isolated peaks of discharge.•In terms of discharge, an average NSE value of 0.74 was achieved.
Data assimilation (DA) in physically-based hydrodynamic models is conditioned by the difference in temporal and spatial scales of the observed data and the resolution of the model itself. In order to use remote sensing data in small-scale hydrodynamic modelling, it is necessary to explore innovative DA methods that can lead to a more plausible representation of the spatial variability of the parameters and processes involved. In the present study, satellite-derived soil moisture and in situ-observed streamflow data were jointly assimilated into a high-resolution hydrological-hydrodynamic model based on the Iber software, using the Tempered Particle Filter (TPF) for the dual estimation of model state variables and parameters. Twelve storm events occurring in a 199 km2 catchment located in NW Spain were used for testing the proposed approach. A 3-step procedure was followed: (1) sensitivity analysis of the model parameters; (2) joint assimilation of soil moisture and discharge data to estimate correlations between observations and model parameters; (3) joint assimilation of soil moisture and discharge data using an initial set of particles and parameter standard deviations derived from prior information. The numerical model correctly reproduces the observed data, with an average Nash-Sutcliffe efficiency (NSE) value of 0.74 over the 12 events when the prior information is used. The approach described is shown to be most efficient with storm events that produce isolated peak discharges. |
---|---|
ISSN: | 0022-1694 1879-2707 |
DOI: | 10.1016/j.jhydrol.2023.129667 |