High order asymptotic expansion for Wiener functionals

Combining the Malliavin calculus with Fourier techniques, we develop a high-order asymptotic expansion theory for general Wiener functionals. Our method gives an expansion of the characteristic functional and of the local density of a Wiener functional up to an arbitrary order. The asymptotic expans...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stochastic processes and their applications 2023-10, Vol.164, p.443-492
Hauptverfasser: Tudor, Ciprian A., Yoshida, Nakahiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Combining the Malliavin calculus with Fourier techniques, we develop a high-order asymptotic expansion theory for general Wiener functionals. Our method gives an expansion of the characteristic functional and of the local density of a Wiener functional up to an arbitrary order. The asymptotic expansion is distributional. Except for the non-degeneracy of the limit covariance matrix, we do not assume any condition of non-degeneracy of the Malliavin covariance like a non-degeneracy condition for temporally local characteristic functions so far assumed in the theory for mixing processes, that corresponds to the Cramér condition in the classical setting. Moreover, our method does not require the Markovian property used in the mixing approach. An application to the stochastic wave equation with space–time white noise is discusses.
ISSN:0304-4149
1879-209X
DOI:10.1016/j.spa.2023.07.001