Combined effect of contraction type and intensity on corticomuscular coherence during isokinetic plantar flexions

During isometric contractions, corticomuscular coherence (CMC) may be modulated along with the contraction intensity. Furthermore, CMC may also vary between contraction types due to the contribution of spinal inhibitory mechanisms. However, the interaction between the effect of the contraction inten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of applied physiology 2023-03, Vol.123 (3), p.609-621
Hauptverfasser: Glories, Dorian, Soulhol, Mathias, Amarantini, David, Duclay, Julien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:During isometric contractions, corticomuscular coherence (CMC) may be modulated along with the contraction intensity. Furthermore, CMC may also vary between contraction types due to the contribution of spinal inhibitory mechanisms. However, the interaction between the effect of the contraction intensity and of the contraction type on CMC remains hitherto unknown. Therefore, CMC and spinal excitability modulations were compared during submaximal isometric, shortening and lengthening contractions of plantar flexor muscles at 25, 50, and 70% of the maximal soleus (SOL) EMG activity. CMC was computed in the time–frequency domain between the Cz EEG electrode signal and the SOL or medial gastrocnemius (MG) EMG signals. The results indicated that beta-band CMC was decreased in the SOL only between 25 and 50–70% contractions for both isometric and anisometric contractions, but remained similar for all contraction intensities in the MG. Spinal excitability was similar for all contraction intensities in both muscles. Meanwhile a divergence of the EEG and the EMG signals mean frequency was observed only in the SOL and only between 25 and 50–70% contractions, independently from the contraction type. Collectively, these findings confirm an effect of the contraction intensity on beta-band CMC, although it was only measured in the SOL, between low-level and high-level contraction intensities. Furthermore, the current findings provide new evidence that the observed modulations of beta-band CMC with the contraction intensity does not depend on the contraction type or on spinal excitability variations.
ISSN:1439-6319
1439-6327
DOI:10.1007/s00421-022-05087-y