Large-Strain Consolidation Analysis for Clayey Sludge Improved by Horizontal Drains

AbstractThe use of prefabricated horizontal drains (PHDs) with combined surcharge and vacuum preloading is an effective improvement approach for dredged clayey slurries. However, there is no large-strain analysis method for PHD-induced consolidation of high-water-content sludge, even though it is a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geotechnical and geoenvironmental engineering 2023-08, Vol.149 (8)
Hauptverfasser: Sun, Hong-lei, Zhang, Hao, Geng, Xue-yu, Cui, Yu-jun, Cai, Yuan-qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:AbstractThe use of prefabricated horizontal drains (PHDs) with combined surcharge and vacuum preloading is an effective improvement approach for dredged clayey slurries. However, there is no large-strain analysis method for PHD-induced consolidation of high-water-content sludge, even though it is a typical large-strain problem. This study develops a two-dimensional plane strain model based on Gibson’s large-strain theory, considering horizontal and vertical flows, nonlinear hydraulic conductivity, and compressibility during the consolidation process. The alternative direction implicit (ADI) difference method is used to solve the governing equation. The proposed model is verified by the data from an analytical one-dimensional (1D) large-strain model and from field measurements. Compared with the improved small-strain models, the proposed model produces a slower consolidation of sludge. Furthermore, the analyses incorporating geometrical and mechanical nonlinearities show that, in comparison with the external load and the horizontal permeability, the spacing of the PHDs (horizontal and vertical) and the vertical permeability are more crucial factors significantly impacting consolidation efficiency. Specifically, smaller PHD spacing and greater vertical permeability lead to a more efficient consolidation.
ISSN:1090-0241
1943-5606
DOI:10.1061/JGGEFK.GTENG-11511