Nanofiltration Treatment of Industrial Wastewater Doped with Organic Dye: A Study of Hydrodynamics and Specific Energy

This study was conducted to eliminate the ions and molecules present in the industrial wastewater received by the municipal wastewater treatment plant (WWTP) of Reghaia, which is located east of Algiers, Algeria. The process was developed for two different study matrices: (a) the wastewater from WWT...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2022-11, Vol.10 (11), p.2277
Hauptverfasser: Youcef, Rokia, Sabba, Nassila, Benhadji, Amel, Djelal, Hayet, Fakhfakh, Nadim, Taleb Ahmed, Mourad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study was conducted to eliminate the ions and molecules present in the industrial wastewater received by the municipal wastewater treatment plant (WWTP) of Reghaia, which is located east of Algiers, Algeria. The process was developed for two different study matrices: (a) the wastewater from WWTP and (b) wastewater mixed with Brilliant Blue FCF (BBF) dye to show the influence of the strength of the ionic solution on the treatment. The most effective operating parameters were determined by assessing the residence time distribution applied to the reactor flow regime. Energy analysis showed the viability of a nanofiltration membrane, improving the permeate flux. The nanofiltration process consumed 1.94 kWh/m3 to reduce the chemical oxygen demand (COD) of 63.58% and 48.35% for raw wastewater and doped BBF wastewater, respectively. The results demonstrated that nanofiltration performance with a volume dilution ratio of 1/2 showed the reduction of the COD of 87.2% after 15 min for undoped wastewater, whereas the retention rate decreases to 64% with an increase of dilution ratio to 4/5 for the same water matrix. The influence of a pH of 5 has a significant influence on the composition of the wastewater matrix by the reduction of COD of 49.8% and 59.68% for doped wastewater and raw wastewater, respectively. This could be explained by the isolated points of the membrane in the order of 4.5.
ISSN:2227-9717
2227-9717
DOI:10.3390/pr10112277