Two-Phase Flow Modeling for Bed Erosion by a Plane Jet Impingement

This paper presents experimental and numerical studies on the erosion of a horizontal granular bed by a two-dimensional plane vertical impinging jet to predict the eroded craters’ size scaling (depth and width). The simulations help understand the microscopic processes that govern erosion in this co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2022-10, Vol.14 (20), p.3290
Hauptverfasser: Pham Van Bang, Damien, Uh Zapata, Miguel, Gauthier, Georges, Gondret, Philippe, Zhang, Wei, Nguyen, Kim Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents experimental and numerical studies on the erosion of a horizontal granular bed by a two-dimensional plane vertical impinging jet to predict the eroded craters’ size scaling (depth and width). The simulations help understand the microscopic processes that govern erosion in this complex flow. A modified jet-bed distance, accounting for the plane jet virtual origin, is successfully used to obtain a unique relationship between the crater size and a local Shields parameter. This work develops a two-phase flow numerical model to reproduce the experimental results. The numerical techniques are based on a finite volume formulation to approximate spatial derivatives, a projection technique to calculate the pressure and velocity for each phase, and a staggered grid to avoid spurious oscillations. Different options for the sediment’s solid-to-liquid transition during erosion are proposed, tested, and discussed. One model is based on unified equations of continuum mechanics, others on modified closure equations for viscosity or momentum transfer. A good agreement between the numerical solutions and the experimental measurements is obtained.
ISSN:2073-4441
2073-4441
DOI:10.3390/w14203290