Modelling the wall friction coefficient for a simple shear granular flow in view of the degradation mechanism
A steady granular flow experiment was performed in a confined annular shear cell to examine how the wall friction coefficient $\mu _w$ degrades from the intrinsic sliding friction coefficient $f$ between the grains and the container wall. Two existing models are invoked to examine the decay trend of...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2023-08, Vol.969, Article A7 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A steady granular flow experiment was performed in a confined annular shear cell to examine how the wall friction coefficient $\mu _w$ degrades from the intrinsic sliding friction coefficient $f$ between the grains and the container wall. Two existing models are invoked to examine the decay trend of $\mu _w/f$ in view of the ratio of shear velocity to the square root of granular temperature $\chi$ (Artoni & Richard, Phys. Rev. Lett., vol. 115, 2015, 158001) and the ratio of grain angular and slip velocities $\varOmega$ (Yang & Huang, Granul. Matt., vol. 18, issue 4, 2016, p. 77), respectively. As both models correlate $\mu _w/f$ to different flow properties, a hidden relation is speculated between $\chi$ and $\varOmega$, or equivalently, between the granular temperature and the grain rotation speed. We used experiment data to confirm and reveal this hidden relation. From there, a unified $\mu _w/f-\chi$ model is proposed with physical meanings for the model coefficients and to show general agreement with the measured trend. Hence we may conclude that both the fluctuations in grain translations and their mean rotation are the crucial yet equivalent mechanisms to degrade $\mu _w/f$. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/jfm.2023.556 |