Exotic aromatic B-series for the study of long time integrators for a class of ergodic SDEs

We introduce a new algebraic framework based on a modification (called exotic) of aromatic Butcher-series for the systematic study of the accuracy of numerical integrators for the invariant measure of a class of ergodic stochastic differential equations (SDEs) with additive noise. The proposed analy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of computation 2020-01, Vol.89 (321), p.169-202
Hauptverfasser: Laurent, Adrien, Vilmart, Gilles
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a new algebraic framework based on a modification (called exotic) of aromatic Butcher-series for the systematic study of the accuracy of numerical integrators for the invariant measure of a class of ergodic stochastic differential equations (SDEs) with additive noise. The proposed analysis covers Runge-Kutta type schemes including the cases of partitioned methods and postprocessed methods. We also show that the introduced exotic aromatic B-series satisfy an isometric equivariance property.
ISSN:0025-5718
1088-6842
DOI:10.1090/mcom/3455