Exotic aromatic B-series for the study of long time integrators for a class of ergodic SDEs
We introduce a new algebraic framework based on a modification (called exotic) of aromatic Butcher-series for the systematic study of the accuracy of numerical integrators for the invariant measure of a class of ergodic stochastic differential equations (SDEs) with additive noise. The proposed analy...
Gespeichert in:
Veröffentlicht in: | Mathematics of computation 2020-01, Vol.89 (321), p.169-202 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a new algebraic framework based on a modification (called exotic) of aromatic Butcher-series for the systematic study of the accuracy of numerical integrators for the invariant measure of a class of ergodic stochastic differential equations (SDEs) with additive noise. The proposed analysis covers Runge-Kutta type schemes including the cases of partitioned methods and postprocessed methods. We also show that the introduced exotic aromatic B-series satisfy an isometric equivariance property. |
---|---|
ISSN: | 0025-5718 1088-6842 |
DOI: | 10.1090/mcom/3455 |