Strengthening the directed Brooks' theorem for oriented graphs and consequences on digraph redicolouring
Let D = ( V , A ) $D=(V,A)$ be a digraph. We define Δ max ( D ) ${{\rm{\Delta }}}_{\max }(D)$ as the maximum of { max ( d + ( v ) , d − ( v ) ) ∣ v ∈ V } $\{\max ({d}^{+}(v),{d}^{-}(v))| v\in V\}$ and Δ min ( D ) ${{\rm{\Delta }}}_{\min }(D)$ as the maximum of { min ( d + ( v ) , d − ( v ) ) ∣ v ∈ V...
Gespeichert in:
Veröffentlicht in: | Journal of graph theory 2024-05, Vol.106 (1), p.5-22 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let D
=
(
V
,
A
) $D=(V,A)$ be a digraph. We define Δ
max
(
D
) ${{\rm{\Delta }}}_{\max }(D)$ as the maximum of {
max
(
d
+
(
v
)
,
d
−
(
v
)
)
∣
v
∈
V
} $\{\max ({d}^{+}(v),{d}^{-}(v))| v\in V\}$ and Δ
min
(
D
) ${{\rm{\Delta }}}_{\min }(D)$ as the maximum of {
min
(
d
+
(
v
)
,
d
−
(
v
)
)
∣
v
∈
V
} $\{\min ({d}^{+}(v),{d}^{-}(v))| v\in V\}$. It is known that the dichromatic number of D $D$ is at most Δ
min
(
D
)
+
1 ${{\rm{\Delta }}}_{\min }(D)+1$. In this work, we prove that every digraph D $D$ which has dichromatic number exactly Δ
min
(
D
)
+
1 ${{\rm{\Delta }}}_{\min }(D)+1$ must contain the directed join of K
r
↔ $\overleftrightarrow{{K}_{r}}$ and K
s
↔ $\overleftrightarrow{{K}_{s}}$ for some r
,
s $r,s$ such that r
+
s
=
Δ
min
(
D
)
+
1 $r+s={{\rm{\Delta }}}_{\min }(D)+1$, except if Δ
min
(
D
)
=
2 ${{\rm{\Delta }}}_{\min }(D)=2$ in which case D $D$ must contain a digon. In particular, every oriented graph G
→ $\overrightarrow{G}$ with Δ
min
(
G
→
)
≥
2 ${{\rm{\Delta }}}_{\min }(\overrightarrow{G})\ge 2$ has dichromatic number at most Δ
min
(
G
→
) ${{\rm{\Delta }}}_{\min }(\overrightarrow{G})$. Let G
→ $\overrightarrow{G}$ be an oriented graph of order n $n$ such that Δ
min
(
G
→
)
≤
1 ${{\rm{\Delta }}}_{\min }(\overrightarrow{G})\le 1$. Given two 2‐dicolourings of G
→ $\overrightarrow{G}$, we show that we can transform one into the other in at most n $n$ steps, by recolouring exactly one vertex at each step while maintaining a dicolouring at any step. Furthermore, we prove that, for every oriented graph G
→ $\overrightarrow{G}$ on n $n$ vertices, the distance between two k $k$‐dicolourings is at most 2
Δ
min
(
G
→
)
n $2{{\rm{\Delta }}}_{\min }(\overrightarrow{G})n$ when k
≥
Δ
min
(
G
→
)
+
1 $k\ge {{\rm{\Delta }}}_{\min }(\overrightarrow{G})+1$. We then extend a theorem of Feghali, Johnson and Paulusma to digraphs. We prove that, for every digraph D $D$ with Δ
max
(
D
)
=
Δ
≥
3 ${{\rm{\Delta }}}_{\max }(D)={\rm{\Delta }}\ge 3$ and every k
≥
Δ
+
1 $k\ge {\rm{\Delta }}+1$, the k $k$‐dicolouring graph of D $D$ consists of isolated vertices and at most one further component that has diameter at most c
Δ
n
2 ${c}_{{\rm{\Delta }}}{n}^{2}$, where c
Δ
=
O
(
Δ
2
) ${c}_{{\rm{\Delta }}}=O({{\rm{\Delta }}}^{2})$ is a constant depending only on Δ ${\rm{\Delta }}$. |
---|---|
ISSN: | 0364-9024 1097-0118 |
DOI: | 10.1002/jgt.23066 |