A Pu–Bonnesen inequality

We prove an inequality of Bonnesen type for the real projective plane, generalizing Pu’s systolic inequality for positively-curved metrics. The remainder term in the inequality, analogous to that in Bonnesen’s inequality, is a function of  R - r (suitably normalized), where  R and  r are respectivel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geometry 2021-08, Vol.112 (2), Article 18
Hauptverfasser: Katz, Mikhail G., Sabourau, Stéphane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove an inequality of Bonnesen type for the real projective plane, generalizing Pu’s systolic inequality for positively-curved metrics. The remainder term in the inequality, analogous to that in Bonnesen’s inequality, is a function of  R - r (suitably normalized), where  R and  r are respectively the circumradius and the inradius of the Weyl–Lewy Euclidean embedding of the orientable double cover. We exploit John ellipsoids of a convex body and Pogorelov’s ridigity theorem.
ISSN:0047-2468
1420-8997
DOI:10.1007/s00022-021-00579-2