A Pu–Bonnesen inequality
We prove an inequality of Bonnesen type for the real projective plane, generalizing Pu’s systolic inequality for positively-curved metrics. The remainder term in the inequality, analogous to that in Bonnesen’s inequality, is a function of R - r (suitably normalized), where R and r are respectivel...
Gespeichert in:
Veröffentlicht in: | Journal of geometry 2021-08, Vol.112 (2), Article 18 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove an inequality of Bonnesen type for the real projective plane, generalizing Pu’s systolic inequality for positively-curved metrics. The remainder term in the inequality, analogous to that in Bonnesen’s inequality, is a function of
R
-
r
(suitably normalized), where
R
and
r
are respectively the circumradius and the inradius of the Weyl–Lewy Euclidean embedding of the orientable double cover. We exploit John ellipsoids of a convex body and Pogorelov’s ridigity theorem. |
---|---|
ISSN: | 0047-2468 1420-8997 |
DOI: | 10.1007/s00022-021-00579-2 |