Excitation Wavelength‐Dependent Fluorescence of a Lanthanide Organic Metal Halide Cluster for Anti‐Counterfeiting Applications
The achievement of significant photoluminescence (PL) in lanthanide ions (Ln3+) has primarily relied on host sensitization, where energy is transferred from the excited host material to the Ln3+ ions. However, this luminous mechanism involves only one optical antenna, namely the host material, which...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2023-12, Vol.62 (52), p.e202316336-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The achievement of significant photoluminescence (PL) in lanthanide ions (Ln3+) has primarily relied on host sensitization, where energy is transferred from the excited host material to the Ln3+ ions. However, this luminous mechanism involves only one optical antenna, namely the host material, which limits the accessibility of excitation wavelength‐dependent (Ex‐De) PL. Consequently, the wider application of Ln3+ ions in light‐emitting devices is hindered. In this study, we present an organic–inorganic compound, (DMA)4LnCl7 (DMA+=[CH3NH2CH3]+, Ln3+=Ce3+, Tb3+), which serves as an independent host lattice material for efficient Ex‐De emission by doping it with trivalent antimony (Sb3+). The pristine (DMA)4LnCl7 compounds exhibit high luminescence, maintaining the characteristic sharp emission bands of Ln3+ and demonstrating a high PL quantum yield of 90–100 %. Upon Sb3+ doping, the compound exhibits noticeable Ex‐De emission with switchable colors. Through a detailed spectral study, we observe that the prominent energy transfer process observed in traditional host‐sensitized systems is absent in these materials. Instead, they exhibit two independent emission centers from Ln3+ and Sb3+, each displaying distinct features in luminous color and radiative lifetime. These findings open up new possibilities for designing Ex‐De emitters based on Ln3+ ions.
Metal halide clusters based on trivalent lanthanide ions have been successfully synthesized, exhibiting a near‐unity photoluminescence quantum yield. Furthermore, the introduction of trivalent antimony (Sb3+) doping results in the emergence of new energy‐level structures for electronic transitions, which enables precise control over the emission color by varying the excitation wavelength. |
---|---|
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.202316336 |