Nonlinear thermo-elastic stability of variable stiffness curvilinear fibres based layered composite beams by shear deformable trigonometric beam model coupled with modified constitutive equations

Nonlinear thermo-elastic buckling characteristics of composite variable stiffness beam with layers making use of curvilinear fibres under thermal environment is attempted here. The model is based on a shear deformable theory introducing trigonometric function, and considering von Kármán’s assumption...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of non-linear mechanics 2023-01, Vol.148, p.104303, Article 104303
Hauptverfasser: Manickam, Ganapathi, Haboussi, Mohamed, D’Ottavio, Michele, Kulkarni, Vedang, Chettiar, Alfred, Gunasekaran, Vijay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nonlinear thermo-elastic buckling characteristics of composite variable stiffness beam with layers making use of curvilinear fibres under thermal environment is attempted here. The model is based on a shear deformable theory introducing trigonometric function, and considering von Kármán’s assumptions based geometrical nonlinear effect. The beam constitutive equation is modified according to the stress-free situation in the width direction of beam-Poisson’s effect in the formulation for predicting the behaviour of general lay-up composite beams. By the principle of minimum total potential energy, the governing equations in terms of incremental stiffness matrices are formed introducing general beam finite element. The global equilibrium equations formulated are solved for envisaging the post-buckling path through eigenvalue analysis iteratively, thus establishing the relationship of thermal temperature against moderate amplitude level of beam deflection. A systematic parametric analysis considering different lamina properties such as curvilinear fibre path angles and including lay-up sequences, thermal expansion coefficient, mixed laminate combining straight and curvilinear fibres-based layers is carried out on thermo-structural stability of curvilinear fibre-based beams. Also, the influence of geometric factors, flexible beam end support, and variation in thermal profile, etc. over the stability behaviour of beam is examined. •Studied the nonlinear thermo-elastic stability of general lay-up composite beams using modified constitutive equations.•Established the nonlinear thermal elastic stability region of composite beams including the effects of curvilinear fibres.•Predicted the temperature rise after buckling against beam deflection, exhibiting varied hard spring type behaviour.•Confirmed the beam equilibrium state change associated with the instability in the nonlinear region.•Wide range of parametric analysis made here form benchmark solutions for other analytical/numerical models.
ISSN:0020-7462
1878-5638
DOI:10.1016/j.ijnonlinmec.2022.104303