A Finitary Structure Theorem for Vertex-Transitive Graphs of Polynomial Growth

We prove a quantitative, finitary version of Trofimov’s result that a connected, locally finite vertex-transitive graph Γ of polynomial growth admits a quotient with finite fibres on which the action of Aut( Γ ) is virtually nilpotent with finite vertex stabilisers. We also present some applications...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combinatorica (Budapest. 1981) 2021-04, Vol.41 (2), p.263-298
Hauptverfasser: Tessera, Romain, Tointon, Matthew C. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove a quantitative, finitary version of Trofimov’s result that a connected, locally finite vertex-transitive graph Γ of polynomial growth admits a quotient with finite fibres on which the action of Aut( Γ ) is virtually nilpotent with finite vertex stabilisers. We also present some applications. We show that a finite, connected vertex-transitive graph Γ of large diameter admits a quotient with fibres of small diameter on which the action of Aut( Γ ) is virtually abelian with vertex stabilisers of bounded size. We also show that Γ has moderate growth in the sense of Diaconis and Saloff-Coste, which is known to imply that the mixing and relaxation times of the lazy random walk on Γ are quadratic in the diameter. These results extend results of Breuillard and the second author for finite Cayley graphs of large diameter. Finally, given a connected, locally finite vertex-transitive graph Γ exhibiting polynomial growth at a single, sufficiently large scale, we describe its growth at subsequent scales, extending a result of Tao and an earlier result of our own for Cayley graphs. In forthcoming work we will give further applications.
ISSN:0209-9683
1439-6912
DOI:10.1007/s00493-020-4295-6