A scaling law for the length of granular jumps down smooth inclines

Granular jumps commonly develop during granular flows over complex topographies or when hitting retaining structures. While this process has been well-studied for hydraulic flows, in granular flows such jumps remain to be fully explored, given the role of interparticle friction. Predicting the lengt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2023-10, Vol.973, Article R1
Hauptverfasser: Escobar, Andrés, Guillard, François, Einav, Itai, Faug, Thierry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Granular jumps commonly develop during granular flows over complex topographies or when hitting retaining structures. While this process has been well-studied for hydraulic flows, in granular flows such jumps remain to be fully explored, given the role of interparticle friction. Predicting the length of granular jumps is a challenging question, relevant to the design of protection dams against avalanches. In this study, we investigate the canonical case of standing jumps formed in granular flows down smooth inclines using extensive numerical simulations based on the discrete element method. We consider both two- and three-dimensional configurations and vary the chute bottom friction to account for the crucial interplay between the sliding along the smooth bottom and the shearing across the granular bulk above. By doing so, we derived a robust scaling law for the jump length that is valid over a wide range of Froude numbers and takes into account the influence of the packing density. The findings have potential implications on a number of situations encountered in industry as well as problems associated with natural hazards.
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2023.757