Computing the distance to continuous-time instability of quadratic matrix polynomials

A bisection method is used to compute lower and upper bounds on the distance from a quadratic matrix polynomial to the set of quadratic matrix polynomials having an eigenvalue on the imaginary axis. Each bisection step requires to check whether an even quadratic matrix polynomial has a purely imagin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerische Mathematik 2020-05, Vol.145 (1), p.149-165
Hauptverfasser: Malyshev, Alexander, Sadkane, Miloud
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bisection method is used to compute lower and upper bounds on the distance from a quadratic matrix polynomial to the set of quadratic matrix polynomials having an eigenvalue on the imaginary axis. Each bisection step requires to check whether an even quadratic matrix polynomial has a purely imaginary eigenvalue. First, an upper bound is obtained using Frobenius-type linearizations. It takes into account rounding errors but does not use the even structure. Then, lower and upper bounds are obtained by reducing the quadratic matrix polynomial to a linear palindromic pencil. The bounds obtained this way also take into account rounding errors. Numerical illustrations are presented.
ISSN:0029-599X
0945-3245
DOI:10.1007/s00211-020-01108-0