Dynamic transmission conditions for linear hyperbolic systems on networks
We study evolution equations on networks that can be modeled by means of hyperbolic systems. We extend our previous findings in Kramar et al. (Linear hyperbolic systems on networks. arXiv:2003.08281 , 2020) by discussing well-posedness under rather general transmission conditions that might be eithe...
Gespeichert in:
Veröffentlicht in: | Journal of evolution equations 2021-09, Vol.21 (3), p.3639-3673 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study evolution equations on networks that can be modeled by means of hyperbolic systems. We extend our previous findings in Kramar et al. (Linear hyperbolic systems on networks.
arXiv:2003.08281
, 2020) by discussing well-posedness under rather general transmission conditions that might be either of stationary or dynamic type—or a combination of both. Our results rely upon semigroup theory and elementary linear algebra. We also discuss qualitative properties of solutions. |
---|---|
ISSN: | 1424-3199 1424-3202 |
DOI: | 10.1007/s00028-021-00715-0 |