Spontaneous Periodic Orbits in the Navier–Stokes Flow

In this paper, a general method to obtain constructive proofs of existence of periodic orbits in the forced autonomous Navier–Stokes equations on the three-torus is proposed. After introducing a zero finding problem posed on a Banach space of geometrically decaying Fourier coefficients, a Newton–Kan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nonlinear science 2021-04, Vol.31 (2), Article 41
Hauptverfasser: van den Berg, Jan Bouwe, Breden, Maxime, Lessard, Jean-Philippe, van Veen, Lennaert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a general method to obtain constructive proofs of existence of periodic orbits in the forced autonomous Navier–Stokes equations on the three-torus is proposed. After introducing a zero finding problem posed on a Banach space of geometrically decaying Fourier coefficients, a Newton–Kantorovich theorem is applied to obtain the (computer-assisted) proofs of existence. The required analytic estimates to verify the contractibility of the operator are presented in full generality and symmetries from the model are used to reduce the size of the problem to be solved. As applications, we present proofs of existence of spontaneous periodic orbits in the Navier–Stokes equations with Taylor–Green forcing.
ISSN:0938-8974
1432-1467
DOI:10.1007/s00332-021-09695-4