Twin-width can be exponential in treewidth
For any small positive real ε and integer t>1ε, we build a graph with a vertex deletion set of size t to a tree, and twin-width greater than 2(1−ε)t. In particular, this shows that the twin-width is sometimes exponential in the treewidth, in the so-called oriented twin-width and grid number, and...
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial theory. Series B 2023-07, Vol.161, p.1-14 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For any small positive real ε and integer t>1ε, we build a graph with a vertex deletion set of size t to a tree, and twin-width greater than 2(1−ε)t. In particular, this shows that the twin-width is sometimes exponential in the treewidth, in the so-called oriented twin-width and grid number, and that adding an apex may multiply the twin-width by at least 2−ε. Except for the one in oriented twin-width, these lower bounds are essentially tight. |
---|---|
ISSN: | 0095-8956 1096-0902 |
DOI: | 10.1016/j.jctb.2023.01.003 |