Twin-width can be exponential in treewidth

For any small positive real ε and integer t>1ε, we build a graph with a vertex deletion set of size t to a tree, and twin-width greater than 2(1−ε)t. In particular, this shows that the twin-width is sometimes exponential in the treewidth, in the so-called oriented twin-width and grid number, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial theory. Series B 2023-07, Vol.161, p.1-14
Hauptverfasser: Bonnet, Édouard, Déprés, Hugues
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For any small positive real ε and integer t>1ε, we build a graph with a vertex deletion set of size t to a tree, and twin-width greater than 2(1−ε)t. In particular, this shows that the twin-width is sometimes exponential in the treewidth, in the so-called oriented twin-width and grid number, and that adding an apex may multiply the twin-width by at least 2−ε. Except for the one in oriented twin-width, these lower bounds are essentially tight.
ISSN:0095-8956
1096-0902
DOI:10.1016/j.jctb.2023.01.003