Nonclassical Nucleation and Crystallization of LiNbO 3 Nanoparticles from the Aqueous Solvothermal Alkoxide Route

The exact molecular reaction pathway and crystallization mechanisms of LiNbO nanoparticles under solvothermal conditions are derived through extensive time- and temperature-resolved experiments allowing to track all the transient molecular and solid species. Starting with a simple mixing of Li/Nb et...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-03, Vol.20 (13), p.e2306417
Hauptverfasser: Riporto, Florian, Dhouib, Ameni, Gheata, Adrian, Beauquis, Sandrine, Molina, Emilie, Guené-Girard, Simon, Galez, Christine, Bornet, Aurélien, Gautier-Luneau, Isabelle, Gerber-Lemaire, Sandrine, Monnier, Virginie, Le Dantec, Ronan, Mugnier, Yannick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The exact molecular reaction pathway and crystallization mechanisms of LiNbO nanoparticles under solvothermal conditions are derived through extensive time- and temperature-resolved experiments allowing to track all the transient molecular and solid species. Starting with a simple mixing of Li/Nb ethoxides, water addition is used to promote condensation after ligand exchange with different co-solvents including alcohols and glycols of variable carbon-chain length. A nonclassical nucleation scheme is first demonstrated after the identification of new octanuclear complexes with a {Li Nb O } core whose solvophobic interactions mediate their aggregation, thus, resulting in a colloidal gel at room-temperature. Upon heating, a more or less frustrated aggregation-mediated crystallization process is then evidenced leading to LiNbO nanocrystals of adjustable mean size between 20 and 100 nm. Such a fine control can be attributed to the variable Nb-OR (R = alkoxy/glycoxy ligand) binding interactions at the surface of crystalline intermediates. Demonstration of such a nonclassical nucleation process and crystallization mechanism for LiNbO not only sheds light on the entire growth process of multifunctional nanomaterials with non-perovskite crystalline structures, but also opens new avenues for the identification of novel bimetallic oxoclusters involved in the formation of several mixed oxides from the aqueous alkoxide route.
ISSN:1613-6810
1613-6829
DOI:10.1002/smll.202306417