Ultrafast demagnetization of Co2MnSi1–xAlx Heusler compounds using terahertz and infrared light

We investigate the ultrafast demagnetization in Co 2 MnSi 1-x Al x quaternary Heusler compounds induced by terahertz (THz) and infrared (IR) pulses. Adjusting the alloy's composition allows us to tailor the spin polarization at the Fermi energy from 97% ± 3% (Co 2 MnSi) due to its minority spin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2023-06, Vol.B 107
Hauptverfasser: Zhang, Wei, Blank, Thomas, Guillemard, C., de Melo, Claudia, Mangin, Stéphane, Kimel, Alexey, Andrieu, Stéphane, Malinowski, Grégory
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the ultrafast demagnetization in Co 2 MnSi 1-x Al x quaternary Heusler compounds induced by terahertz (THz) and infrared (IR) pulses. Adjusting the alloy's composition allows us to tailor the spin polarization at the Fermi energy from 97% ± 3% (Co 2 MnSi) due to its minority spin gap around 0.6 eV, down to 63% ± 3% (Co 2 MnAl) without a spin gap. Here we experimentally compare the cases of ultrafast demagnetization, when the material is excited with the help of laser pulses with photon energies below and above the minority spin gap, respectively. More particularly, the pump-photon energies were tuned from 1.02 eV (IR) down to 4.1 meV (THz). We found that the ultrafast demagnetization time decreases upon substitution of Si by Al and thus destroys the minority spin gap. Moreover, a decrease of the pump-photon energies in the near-infrared spectral range results in a slight increase of the demagnetization time. Nevertheless, further decrease of the photon energy by a factor of 250 hardly changes the characteristic time of ultrafast demagnetization. Both THz and IR pulses cause very similar ultrafast magnetization dynamics in our Co 2 MnSi 1-x Al x Heusler compounds.
ISSN:2469-9950
2469-9969
DOI:10.1103/physrevb.107.224408