In silico, in vitro, and in vivo machine learning in synthetic biology and metabolic engineering

Among the main learning methods reviewed in this study and used in synthetic biology and metabolic engineering are supervised learning, reinforcement and active learning, and in vitro or in vivo learning. In the context of biosynthesis, supervised machine learning is being exploited to predict biolo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current opinion in chemical biology 2021-12, Vol.65, p.85-92
Hauptverfasser: Faulon, Jean-Loup, Faure, Léon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Among the main learning methods reviewed in this study and used in synthetic biology and metabolic engineering are supervised learning, reinforcement and active learning, and in vitro or in vivo learning. In the context of biosynthesis, supervised machine learning is being exploited to predict biological sequence activities, predict structures and engineer sequences, and optimize culture conditions. Active and reinforcement learning methods use training sets acquired through an iterative process generally involving experimental measurements. They are applied to design, engineer, and optimize metabolic pathways and bioprocesses. The nascent but promising developments with in vitro and in vivo learning comprise molecular circuits performing simple tasks such as pattern recognition and classification.
ISSN:1367-5931
1879-0402
1367-5931
DOI:10.1016/j.cbpa.2021.06.002