A Hardy–Littlewood Maximal Operator for the Generalized Fourier Transform on R
In this paper, we define and study a canonical Hardy–Littlewood-type maximal operator associated with the one-dimensional generalized Fourier transform. For this operator to which covering methods do not apply, we construct a geometric maximal operator, which controls pointwise the canonical maximal...
Gespeichert in:
Veröffentlicht in: | The Journal of geometric analysis 2020-04, Vol.30 (2), p.2273-2289 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we define and study a canonical Hardy–Littlewood-type maximal operator associated with the one-dimensional generalized Fourier transform. For this operator to which covering methods do not apply, we construct a geometric maximal operator, which controls pointwise the canonical maximal operator, and for which we can use the machinery of real analysis to obtain a maximal theorem. |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-019-00183-6 |