Crystallization in the TeO2 - Ta2O5 - Bi2O3 system: From glass to anti-glass to transparent ceramic

Glass samples belonging the TeO2 - Ta2O5 - Bi2O3 (TTB) system are prepared by conventional melt-quenching technique and the corresponding vitreous domain is identified. A crystallization study of the 80 TeO2 - 10 Ta2O5 - 10 Bi2O3 glass composition versus temperature shows structural transitions from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the European Ceramic Society 2024-02, Vol.44 (2), p.1131-1142
Hauptverfasser: Benchorfi, Hasnaa, Chenu, Sébastien, Duclère, Jean-René, Genevois, Cécile, Allix, Mathieu, Véron, Emmanuel, Cornette, Julie, Colas, Maggy, Rivera, V.A.G., Fuertes, Victor, Brisset, François, Carles, Pierre, Aouji, Samar, Thomas, Philippe, Messaddeq, Younès, Delaizir, Gaëlle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Glass samples belonging the TeO2 - Ta2O5 - Bi2O3 (TTB) system are prepared by conventional melt-quenching technique and the corresponding vitreous domain is identified. A crystallization study of the 80 TeO2 - 10 Ta2O5 - 10 Bi2O3 glass composition versus temperature shows structural transitions from glass to the stabilization of an unreported translucent anti-glass phase and eventually to a fully transparent crystalline ceramic in both the visible and infrared ranges. The structure and microstructure of the anti-glass and ceramic phases are characterized by Powder X-Ray Diffraction, Electron Back-Scatter Diffraction, Transmission Electron Microscopy and Raman spectroscopy. The optical properties of undoped and Er3+-doped transparent samples are also discussed. Up-conversion green emission band shows that the glass intensity is about 2 and 4 times more intense than that of the anti-glass and the ceramic, respectively. Furthermore, a large spectral bandwidth of 105 nm is found in the anti-glass sample. The advantageous spectroscopic characteristics found here, together with the good thermal stability of these samples, suggest that the anti-glass phase has potential applications as amplification medium for the generation of ultrashort (femtoseconds) pulses.
ISSN:0955-2219
1873-619X
DOI:10.1016/j.jeurceramsoc.2023.09.045