Cloud-based differentially private image classification

In this paper, our aim is to design and develop an anonymous full-duplex image classification framework under Differential Privacy. We work under the assumption that both, the cloud and the querier are semi-trusted entities, thus their data should remain safe and confidential. That is, neither the q...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless networks 2023-04, Vol.29 (3), p.997-1004
Hauptverfasser: Chicha, Elie, Al Bouna, Bechara, Nassar, Mohamed, Chbeir, Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, our aim is to design and develop an anonymous full-duplex image classification framework under Differential Privacy. We work under the assumption that both, the cloud and the querier are semi-trusted entities, thus their data should remain safe and confidential. That is, neither the querier nor the cloud should be able to link a particular individual from the other party to an image while maintaining, to a certain extent, suitable classification accuracy. We use Principal Component Analysis (PCA) to transform sample images into anonymized vectors; differentially private synopsis of PCA vectors, and we ensure that the individuals in these vectors remain unidentifiable.
ISSN:1022-0038
1572-8196
DOI:10.1007/s11276-018-1885-y