Linear unmixing of hyperspectral images using a scaled gradient method

This paper addresses the problem of linear unmixing for hyperspectral imagery. This problem can be formulated as a linear regression problem whose regression coefficients (abundances) satisfy sum-to-one and positivity constraints. Two scaled gradient iterative methods are proposed for estimating the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Theys, C., Dobigeon, N., Tourneret, J.-Y., Lanteri, H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper addresses the problem of linear unmixing for hyperspectral imagery. This problem can be formulated as a linear regression problem whose regression coefficients (abundances) satisfy sum-to-one and positivity constraints. Two scaled gradient iterative methods are proposed for estimating the abundances of the linear mixing model. The first method is obtained by including a normalization step in the scaled gradient method. The second method inspired by the fully constrained least squares algorithm includes the sum-to-one constraint in the observation model with an appropriate weighting parameter. Simulations on synthetic data illustrate the performance of these algorithms.
ISSN:2373-0803
2693-3551
DOI:10.1109/SSP.2009.5278458