Chemical extraction, characterization, and inspection of the antimicrobial and antibiofilm activities of shrimp chitosan against foodborne fungi and bacteria

Nowadays, the exploitation of biopolymers in the industrial sector has become a trend. Chitosan is considered one of the most investigated biopolymers due to its abundance and antibacterial, antifungal, and antibiofilm activities. In this work, chitosan was chemically extracted from shrimp shells. S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:World journal of microbiology & biotechnology 2023-12, Vol.39 (12), p.338-338, Article 338
Hauptverfasser: Mouhoub, Anouar, Boutachfaiti, Redouan El, Petit, Emmanuel, Molinié, Roland, Guendouz, Amine, El Alaoui-Talibi, Zainab, Koraichi, Saad Ibnsouda, Delattre, Cédric, Modafar, Cherkaoui El
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nowadays, the exploitation of biopolymers in the industrial sector has become a trend. Chitosan is considered one of the most investigated biopolymers due to its abundance and antibacterial, antifungal, and antibiofilm activities. In this work, chitosan was chemically extracted from shrimp shells. Solutions of HCl 1 M, NaOH 4 M, and NaOH 15 M were used for the demineralization, deproteinization, and deacetylation process, respectively. The utilized methods of characterization (FTIR, 1  H NMR, 13  C NMR, and SEC-MALS) revealed that the obtained chitosan has a moderate degree of deacetylation and low molecular weight (DDA = 74% and Mw = 72.14 kDa). The microdilution method and inoculation of solid medium were carried out to assess the antibiofilm action of chitosan against Staphylococcus aureus , Pseudomonas aeruginosa , Enterococcus hirae , Escherichia coli , Rhizopus sp., and Aspergillus sp. which are known as foodborne microorganisms. Results showed that the produced chitosan at 1 g/L inhibits between 63.44 and 99.75% of the microbial biofilm depending on the tested strains. These promising results confirm the potential deployment of the obtained chitosan in the food industry as a replacement for synthetic antimicrobial agents.
ISSN:0959-3993
1573-0972
DOI:10.1007/s11274-023-03798-8