Ginzburg-Landau minimizers near the first critical field have bounded vorticity
We prove that for fields close enough to the first critical field, minimizers of the Ginzburg-Landau functional have a number of vortices bounded independently from the Ginzburg-Landau parameter. This generalizes a result proved in [SS1] and shows that locally minimizing solutions of the Ginzburg-La...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2003-05, Vol.17 (1), p.17-28 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that for fields close enough to the first critical field, minimizers of the Ginzburg-Landau functional have a number of vortices bounded independently from the Ginzburg-Landau parameter. This generalizes a result proved in [SS1] and shows that locally minimizing solutions of the Ginzburg-Landau equation found in [S1, S3] are actually global minimizers. It also gives a partial answer to a question raised by F. Bethuel and T. Riviere in [BR]. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-002-0158-9 |