Ginzburg-Landau minimizers near the first critical field have bounded vorticity

We prove that for fields close enough to the first critical field, minimizers of the Ginzburg-Landau functional have a number of vortices bounded independently from the Ginzburg-Landau parameter. This generalizes a result proved in [SS1] and shows that locally minimizing solutions of the Ginzburg-La...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2003-05, Vol.17 (1), p.17-28
Hauptverfasser: Sandier, E., Serfaty, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that for fields close enough to the first critical field, minimizers of the Ginzburg-Landau functional have a number of vortices bounded independently from the Ginzburg-Landau parameter. This generalizes a result proved in [SS1] and shows that locally minimizing solutions of the Ginzburg-Landau equation found in [S1, S3] are actually global minimizers. It also gives a partial answer to a question raised by F. Bethuel and T. Riviere in [BR]. [PUBLICATION ABSTRACT]
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-002-0158-9