Non-semisimple 3-manifold invariants derived from the Kauffman bracket
We recover the family of non-semisimple quantum invariants of closed oriented 3-manifolds associated with the small quantum group of \mathfrak{sl_2} using purely combinatorial methods based on Temperley–Lieb algebras and Kauffman bracket polynomials. These invariants can be understood as a first-ord...
Gespeichert in:
Veröffentlicht in: | Quantum topology 2022-03, Vol.13 (2), p.255-333 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We recover the family of non-semisimple quantum invariants of closed oriented 3-manifolds associated with the small quantum group of
\mathfrak{sl_2}
using purely combinatorial methods based on Temperley–Lieb algebras and Kauffman bracket polynomials. These invariants can be understood as a first-order extension of Witten–Reshetikhin–Turaev invariants, which can be reformulated following our approach in the case of rational homology spheres. |
---|---|
ISSN: | 1663-487X 1664-073X |
DOI: | 10.4171/qt/164 |