Homogeneous incompressible Bingham viscoplastic as a limit of bi-viscosity fluids

In this paper, the existence of a weak solution for homogeneous incompressible Bingham fluid is investigated. The rheology of such a fluid is defined by a yield stress τ y and a discontinuous stress–strain law. This non-Newtonian fluid behaves like a solid at low stresses and like a non-linear fluid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of elliptic and parabolic equations 2023-12, Vol.9 (2), p.705-724
Hauptverfasser: Aberqi, Ahmed, Aboussi, Wassim, Benkhaldoun, Fayssal, Bennouna, Jaouad, Bradji, Abdallah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 724
container_issue 2
container_start_page 705
container_title Journal of elliptic and parabolic equations
container_volume 9
creator Aberqi, Ahmed
Aboussi, Wassim
Benkhaldoun, Fayssal
Bennouna, Jaouad
Bradji, Abdallah
description In this paper, the existence of a weak solution for homogeneous incompressible Bingham fluid is investigated. The rheology of such a fluid is defined by a yield stress τ y and a discontinuous stress–strain law. This non-Newtonian fluid behaves like a solid at low stresses and like a non-linear fluid above the yield stress. In this work we propose to build a weak solution for Navier stokes Bingham equations using a bi-viscosity fluid as an approximation, in particular, we proved that the bi-viscosity tensor converges weakly to the Bingham tensor. This choice allowed us to show the existence of solutions for a given data f ∈ L 2 ( 0 , T ; V ′ ) .
doi_str_mv 10.1007/s41808-023-00221-z
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04229791v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04229791v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c276t-336e0e1f5716d24d299c6bd3030d4eaebe5c042aac805c293685404e05b70b873</originalsourceid><addsrcrecordid>eNp9kFFLwzAQx4MoOHRfwKe8-hC9JG3TPM6hThiIoM8hTdMto21Grxtsn95ulT36dMfd_3dwP0IeODxxAPWMCc8hZyAkAxCCs-MVmQihM6ZB6utLL-CWTBE3MKSUTFQGE_K1iE1c-dbHHdLQuthsO48YitrTl9Cu1rah-4AubmuLfXDUIrW0Dk3oaaxoEdh5i6E_0KrehRLvyU1la_TTv3pHft5ev-cLtvx8_5jPlswJlfVMysyD51WqeFaKpBRau6woJUgoE2994VMHibDW5ZA6oWWWpwkkHtJCQZEreUcex7trW5ttFxrbHUy0wSxmS3OaDbTQSvM9H7JizLouIna-ugAczMmhGR2awaE5OzTHAZIjhEO4XfnObOKua4ef_qN-ASFXdKo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Homogeneous incompressible Bingham viscoplastic as a limit of bi-viscosity fluids</title><source>SpringerLink Journals - AutoHoldings</source><creator>Aberqi, Ahmed ; Aboussi, Wassim ; Benkhaldoun, Fayssal ; Bennouna, Jaouad ; Bradji, Abdallah</creator><creatorcontrib>Aberqi, Ahmed ; Aboussi, Wassim ; Benkhaldoun, Fayssal ; Bennouna, Jaouad ; Bradji, Abdallah</creatorcontrib><description>In this paper, the existence of a weak solution for homogeneous incompressible Bingham fluid is investigated. The rheology of such a fluid is defined by a yield stress τ y and a discontinuous stress–strain law. This non-Newtonian fluid behaves like a solid at low stresses and like a non-linear fluid above the yield stress. In this work we propose to build a weak solution for Navier stokes Bingham equations using a bi-viscosity fluid as an approximation, in particular, we proved that the bi-viscosity tensor converges weakly to the Bingham tensor. This choice allowed us to show the existence of solutions for a given data f ∈ L 2 ( 0 , T ; V ′ ) .</description><identifier>ISSN: 2296-9020</identifier><identifier>EISSN: 2296-9039</identifier><identifier>DOI: 10.1007/s41808-023-00221-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Mathematics ; Mathematics and Statistics ; Partial Differential Equations</subject><ispartof>Journal of elliptic and parabolic equations, 2023-12, Vol.9 (2), p.705-724</ispartof><rights>Orthogonal Publisher and Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c276t-336e0e1f5716d24d299c6bd3030d4eaebe5c042aac805c293685404e05b70b873</cites><orcidid>0000-0003-1186-5184 ; 0000-0002-3156-3303 ; 0000-0002-5889-492X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s41808-023-00221-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s41808-023-00221-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04229791$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Aberqi, Ahmed</creatorcontrib><creatorcontrib>Aboussi, Wassim</creatorcontrib><creatorcontrib>Benkhaldoun, Fayssal</creatorcontrib><creatorcontrib>Bennouna, Jaouad</creatorcontrib><creatorcontrib>Bradji, Abdallah</creatorcontrib><title>Homogeneous incompressible Bingham viscoplastic as a limit of bi-viscosity fluids</title><title>Journal of elliptic and parabolic equations</title><addtitle>J Elliptic Parabol Equ</addtitle><description>In this paper, the existence of a weak solution for homogeneous incompressible Bingham fluid is investigated. The rheology of such a fluid is defined by a yield stress τ y and a discontinuous stress–strain law. This non-Newtonian fluid behaves like a solid at low stresses and like a non-linear fluid above the yield stress. In this work we propose to build a weak solution for Navier stokes Bingham equations using a bi-viscosity fluid as an approximation, in particular, we proved that the bi-viscosity tensor converges weakly to the Bingham tensor. This choice allowed us to show the existence of solutions for a given data f ∈ L 2 ( 0 , T ; V ′ ) .</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><issn>2296-9020</issn><issn>2296-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kFFLwzAQx4MoOHRfwKe8-hC9JG3TPM6hThiIoM8hTdMto21Grxtsn95ulT36dMfd_3dwP0IeODxxAPWMCc8hZyAkAxCCs-MVmQihM6ZB6utLL-CWTBE3MKSUTFQGE_K1iE1c-dbHHdLQuthsO48YitrTl9Cu1rah-4AubmuLfXDUIrW0Dk3oaaxoEdh5i6E_0KrehRLvyU1la_TTv3pHft5ev-cLtvx8_5jPlswJlfVMysyD51WqeFaKpBRau6woJUgoE2994VMHibDW5ZA6oWWWpwkkHtJCQZEreUcex7trW5ttFxrbHUy0wSxmS3OaDbTQSvM9H7JizLouIna-ugAczMmhGR2awaE5OzTHAZIjhEO4XfnObOKua4ef_qN-ASFXdKo</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Aberqi, Ahmed</creator><creator>Aboussi, Wassim</creator><creator>Benkhaldoun, Fayssal</creator><creator>Bennouna, Jaouad</creator><creator>Bradji, Abdallah</creator><general>Springer International Publishing</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1186-5184</orcidid><orcidid>https://orcid.org/0000-0002-3156-3303</orcidid><orcidid>https://orcid.org/0000-0002-5889-492X</orcidid></search><sort><creationdate>20231201</creationdate><title>Homogeneous incompressible Bingham viscoplastic as a limit of bi-viscosity fluids</title><author>Aberqi, Ahmed ; Aboussi, Wassim ; Benkhaldoun, Fayssal ; Bennouna, Jaouad ; Bradji, Abdallah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c276t-336e0e1f5716d24d299c6bd3030d4eaebe5c042aac805c293685404e05b70b873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aberqi, Ahmed</creatorcontrib><creatorcontrib>Aboussi, Wassim</creatorcontrib><creatorcontrib>Benkhaldoun, Fayssal</creatorcontrib><creatorcontrib>Bennouna, Jaouad</creatorcontrib><creatorcontrib>Bradji, Abdallah</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of elliptic and parabolic equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aberqi, Ahmed</au><au>Aboussi, Wassim</au><au>Benkhaldoun, Fayssal</au><au>Bennouna, Jaouad</au><au>Bradji, Abdallah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homogeneous incompressible Bingham viscoplastic as a limit of bi-viscosity fluids</atitle><jtitle>Journal of elliptic and parabolic equations</jtitle><stitle>J Elliptic Parabol Equ</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>9</volume><issue>2</issue><spage>705</spage><epage>724</epage><pages>705-724</pages><issn>2296-9020</issn><eissn>2296-9039</eissn><abstract>In this paper, the existence of a weak solution for homogeneous incompressible Bingham fluid is investigated. The rheology of such a fluid is defined by a yield stress τ y and a discontinuous stress–strain law. This non-Newtonian fluid behaves like a solid at low stresses and like a non-linear fluid above the yield stress. In this work we propose to build a weak solution for Navier stokes Bingham equations using a bi-viscosity fluid as an approximation, in particular, we proved that the bi-viscosity tensor converges weakly to the Bingham tensor. This choice allowed us to show the existence of solutions for a given data f ∈ L 2 ( 0 , T ; V ′ ) .</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s41808-023-00221-z</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-1186-5184</orcidid><orcidid>https://orcid.org/0000-0002-3156-3303</orcidid><orcidid>https://orcid.org/0000-0002-5889-492X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2296-9020
ispartof Journal of elliptic and parabolic equations, 2023-12, Vol.9 (2), p.705-724
issn 2296-9020
2296-9039
language eng
recordid cdi_hal_primary_oai_HAL_hal_04229791v1
source SpringerLink Journals - AutoHoldings
subjects Mathematics
Mathematics and Statistics
Partial Differential Equations
title Homogeneous incompressible Bingham viscoplastic as a limit of bi-viscosity fluids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A54%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homogeneous%20incompressible%20Bingham%20viscoplastic%20as%20a%20limit%20of%20bi-viscosity%20fluids&rft.jtitle=Journal%20of%20elliptic%20and%20parabolic%20equations&rft.au=Aberqi,%20Ahmed&rft.date=2023-12-01&rft.volume=9&rft.issue=2&rft.spage=705&rft.epage=724&rft.pages=705-724&rft.issn=2296-9020&rft.eissn=2296-9039&rft_id=info:doi/10.1007/s41808-023-00221-z&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04229791v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true