Homogeneous incompressible Bingham viscoplastic as a limit of bi-viscosity fluids
In this paper, the existence of a weak solution for homogeneous incompressible Bingham fluid is investigated. The rheology of such a fluid is defined by a yield stress τ y and a discontinuous stress–strain law. This non-Newtonian fluid behaves like a solid at low stresses and like a non-linear fluid...
Gespeichert in:
Veröffentlicht in: | Journal of elliptic and parabolic equations 2023-12, Vol.9 (2), p.705-724 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, the existence of a weak solution for homogeneous incompressible Bingham fluid is investigated. The rheology of such a fluid is defined by a yield stress
τ
y
and a discontinuous stress–strain law. This non-Newtonian fluid behaves like a solid at low stresses and like a non-linear fluid above the yield stress. In this work we propose to build a weak solution for Navier stokes Bingham equations using a bi-viscosity fluid as an approximation, in particular, we proved that the bi-viscosity tensor converges weakly to the Bingham tensor. This choice allowed us to show the existence of solutions for a given data
f
∈
L
2
(
0
,
T
;
V
′
)
. |
---|---|
ISSN: | 2296-9020 2296-9039 |
DOI: | 10.1007/s41808-023-00221-z |