Homogeneous incompressible Bingham viscoplastic as a limit of bi-viscosity fluids

In this paper, the existence of a weak solution for homogeneous incompressible Bingham fluid is investigated. The rheology of such a fluid is defined by a yield stress τ y and a discontinuous stress–strain law. This non-Newtonian fluid behaves like a solid at low stresses and like a non-linear fluid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of elliptic and parabolic equations 2023-12, Vol.9 (2), p.705-724
Hauptverfasser: Aberqi, Ahmed, Aboussi, Wassim, Benkhaldoun, Fayssal, Bennouna, Jaouad, Bradji, Abdallah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the existence of a weak solution for homogeneous incompressible Bingham fluid is investigated. The rheology of such a fluid is defined by a yield stress τ y and a discontinuous stress–strain law. This non-Newtonian fluid behaves like a solid at low stresses and like a non-linear fluid above the yield stress. In this work we propose to build a weak solution for Navier stokes Bingham equations using a bi-viscosity fluid as an approximation, in particular, we proved that the bi-viscosity tensor converges weakly to the Bingham tensor. This choice allowed us to show the existence of solutions for a given data f ∈ L 2 ( 0 , T ; V ′ ) .
ISSN:2296-9020
2296-9039
DOI:10.1007/s41808-023-00221-z