Petrological and geochemical constraints on the magmatic evolution at the Ampato-Sabancaya compound volcano (Peru)
In order to gain insights into continental arc magmatic processes, we have conducted a petrological and geochemical study of major and trace elements and Sr, Nd, and Pb isotopes of the Ampato-Sabancaya compound volcano, which belongs to the Andean Central Volcanic Zone (CVZ). Whole-rock compositions...
Gespeichert in:
Veröffentlicht in: | Lithos 2023-11, Vol.458-459, p.107364, Article 107364 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In order to gain insights into continental arc magmatic processes, we have conducted a petrological and geochemical study of major and trace elements and Sr, Nd, and Pb isotopes of the Ampato-Sabancaya compound volcano, which belongs to the Andean Central Volcanic Zone (CVZ). Whole-rock compositions for Ampato and Sabancaya range from andesites to dacites (56.7–69.3 wt% SiO2) and both belong to a medium- to high-K calk-alkaline magmatic series. Ampato-Sabancaya samples are characterized by high contents of large-ion lithophile elements (LILE; e.g., K, Rb, Ba, Th), low concentrations of high field strength elements (HFSE; e.g., Nb, Zr) and heavy rare earth elements (HREE; e.g., Yb), with consequently high La/Yb and Sr/Y ratios. An increase in these ratios is usually interpreted as a result of magmatic differentiation in the presence of garnet in the deep crust. A detailed analysis reveals that the rocks of Ampato-Sabancaya display three different compositional groups. (1) The first, composed mainly of andesites (56.7–59.8 wt% SiO2), corresponds to lavas from the early stage of the Ampato Basal edifice, as well as pyroclastic deposits from the Ampato Upper edifice. (2) The second group corresponds to andesitic and dacitic compositions (60.0–67.3 wt% SiO2) from the Ampato Basal edifice (Moldepampa stage), the Ampato Upper edifice, and the Sabancaya edifice. (3) The third group corresponds to dacitic compositions (65.0–69.3 wt% SiO2) associated with the Corinta Plinian fallout and pyroclastic flow deposits from the Ampato Upper edifice. This last group of dacites, erupted during the Ampato Upper edifice stage, have drastically different compositions from the other groups with Sr/Y ( |
---|---|
ISSN: | 0024-4937 1872-6143 |
DOI: | 10.1016/j.lithos.2023.107364 |