Fixed point conditions for non-coprime actions
In the setting of finite groups, suppose $J$ acts on $N$ via automorphisms so that the induced semidirect product $N\rtimes J$ acts on some non-empty set $\Omega$ , with $N$ acting transitively. Glauberman proved that if the orders of $J$ and $N$ are coprime, then $J$ fixes a point in $\Omega$ . We...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2023-09, p.1-7 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the setting of finite groups, suppose
$J$
acts on
$N$
via automorphisms so that the induced semidirect product
$N\rtimes J$
acts on some non-empty set
$\Omega$
, with
$N$
acting transitively. Glauberman proved that if the orders of
$J$
and
$N$
are coprime, then
$J$
fixes a point in
$\Omega$
. We consider the non-coprime case and show that if
$N$
is abelian and a Sylow
$p$
-subgroup of
$J$
fixes a point in
$\Omega$
for each prime
$p$
, then
$J$
fixes a point in
$\Omega$
. We also show that if
$N$
is nilpotent,
$N\rtimes J$
is supersoluble, and a Sylow
$p$
-subgroup of
$J$
fixes a point in
$\Omega$
for each prime
$p$
, then
$J$
fixes a point in
$\Omega$
. |
---|---|
ISSN: | 0308-2105 1473-7124 |
DOI: | 10.1017/prm.2023.96 |