Fixed point conditions for non-coprime actions

In the setting of finite groups, suppose $J$ acts on $N$ via automorphisms so that the induced semidirect product $N\rtimes J$ acts on some non-empty set $\Omega$ , with $N$ acting transitively. Glauberman proved that if the orders of $J$ and $N$ are coprime, then $J$ fixes a point in $\Omega$ . We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2023-09, p.1-7
1. Verfasser: Burkhart, Michael C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the setting of finite groups, suppose $J$ acts on $N$ via automorphisms so that the induced semidirect product $N\rtimes J$ acts on some non-empty set $\Omega$ , with $N$ acting transitively. Glauberman proved that if the orders of $J$ and $N$ are coprime, then $J$ fixes a point in $\Omega$ . We consider the non-coprime case and show that if $N$ is abelian and a Sylow $p$ -subgroup of $J$ fixes a point in $\Omega$ for each prime $p$ , then $J$ fixes a point in $\Omega$ . We also show that if $N$ is nilpotent, $N\rtimes J$ is supersoluble, and a Sylow $p$ -subgroup of $J$ fixes a point in $\Omega$ for each prime $p$ , then $J$ fixes a point in $\Omega$ .
ISSN:0308-2105
1473-7124
DOI:10.1017/prm.2023.96