Drying Drops of Paint Suspension: From “Fried Eggs” to Quasi-Homogeneous Patterns

Drying of multicomponent sessile drops is a complex phenomenon involving intricate mechanisms. Here, we study the evaporation of drops made of paint suspension and investigate the influence of the substrate temperature and suspension concentration on the resulting deposit patterns. At low concentrat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2023-09, Vol.39 (38), p.13579-13587
Hauptverfasser: Ramos, Stella M. M., Soubeyrand, Damien, Fulcrand, Rémy, Barentin, Catherine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Drying of multicomponent sessile drops is a complex phenomenon involving intricate mechanisms. Here, we study the evaporation of drops made of paint suspension and investigate the influence of the substrate temperature and suspension concentration on the resulting deposit patterns. At low concentrations and temperatures, the pigments appear highly concentrated in a narrow area at the center of the drop, a morphology we call “fried eggs”. Increasing the temperature or concentration leads to more homogeneous patterns. From a top-view camera used for monitoring the whole evaporative process, we identify three mechanisms responsible for the final pattern: inward/outward flows that convect the pigments, gelation of the paint suspension where pigments accumulate, and final drying of the drop that freezes the location of the pigments onto the substrate. The relative kinetics of these three mechanisms upon concentration and temperature govern the deposit growth and the morphology of the final pattern. These observations are quantitatively supported by rheological measurements highlighting a strong increase of the viscosity with concentration, consistent with the gelation mechanism. Finally, we show that the kinetics of drop drying is controlled by the substrate temperature.
ISSN:0743-7463
1520-5827
DOI:10.1021/acs.langmuir.3c01605