Overcompleteness of Sequences of Reproducing Kernels in Model Spaces

We give necessary conditions and sufficient conditions for sequences of reproducing kernels $(k_Θ(•, λ_n))_{n≥1}$ to be overcomplete in a given model space $K^p_Θ$ where $Θ$ is an inner function in $H^\infty$, $p ∈ (1,∞)$, and where $(λ_n)_{n≥1}$ is an infinite sequence of pairwise distinct points i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integral equations and operator theory 2006-09, Vol.56 (1), p.45-56
Hauptverfasser: Chalendar, I., Fricain, E., Partington, J. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 56
container_issue 1
container_start_page 45
container_title Integral equations and operator theory
container_volume 56
creator Chalendar, I.
Fricain, E.
Partington, J. R.
description We give necessary conditions and sufficient conditions for sequences of reproducing kernels $(k_Θ(•, λ_n))_{n≥1}$ to be overcomplete in a given model space $K^p_Θ$ where $Θ$ is an inner function in $H^\infty$, $p ∈ (1,∞)$, and where $(λ_n)_{n≥1}$ is an infinite sequence of pairwise distinct points in the open unit disc. Under certain conditions on $Θ$ we obtain an exact characterization of overcompleteness. As a consequence we are able to describe the overcomplete exponential systems in $L^2(0, a)$.
doi_str_mv 10.1007/s00020-005-1413-1
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04207024v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04207024v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-3332db006c298bd7ee5140168d85da49f5507e0f5d56afc9e8b639bbc4c2d2d93</originalsourceid><addsrcrecordid>eNo9kNFKwzAUhoMoWKcP4F1vvYieJE2bXI6pmzgZOAXvQpqcaqVra7INfHs7K14dzs_3HzgfIZcMrhlAcRMBgAMFkJRlTFB2RBKWDYnSSh-TBEShaM7h7ZScxfg5wLzgeUJuV3sMrtv0DW6xxRjTrkrX-LXD1uHv8ox96PzO1e17-oihxSamdZs-dR6bdN3bATsnJ5VtIl78zQl5vb97mS3ocjV_mE2X1AnOt1QIwX0JkDuuVekLRMkyYLnySnqb6UpKKBAq6WVuK6dRlbnQZekyxz33WkzI1Xj3wzamD_XGhm_T2dospktzyGD4uACe7dnAspF1oYsxYPVfYGAOysyozAzKzEGZYeIHMdNeJA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Overcompleteness of Sequences of Reproducing Kernels in Model Spaces</title><source>Springer Nature - Complete Springer Journals</source><creator>Chalendar, I. ; Fricain, E. ; Partington, J. R.</creator><creatorcontrib>Chalendar, I. ; Fricain, E. ; Partington, J. R.</creatorcontrib><description>We give necessary conditions and sufficient conditions for sequences of reproducing kernels $(k_Θ(•, λ_n))_{n≥1}$ to be overcomplete in a given model space $K^p_Θ$ where $Θ$ is an inner function in $H^\infty$, $p ∈ (1,∞)$, and where $(λ_n)_{n≥1}$ is an infinite sequence of pairwise distinct points in the open unit disc. Under certain conditions on $Θ$ we obtain an exact characterization of overcompleteness. As a consequence we are able to describe the overcomplete exponential systems in $L^2(0, a)$.</description><identifier>ISSN: 0378-620X</identifier><identifier>EISSN: 1420-8989</identifier><identifier>DOI: 10.1007/s00020-005-1413-1</identifier><language>eng</language><publisher>Springer Verlag</publisher><subject>Mathematics</subject><ispartof>Integral equations and operator theory, 2006-09, Vol.56 (1), p.45-56</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-3332db006c298bd7ee5140168d85da49f5507e0f5d56afc9e8b639bbc4c2d2d93</citedby><orcidid>0000-0002-9929-7419</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04207024$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chalendar, I.</creatorcontrib><creatorcontrib>Fricain, E.</creatorcontrib><creatorcontrib>Partington, J. R.</creatorcontrib><title>Overcompleteness of Sequences of Reproducing Kernels in Model Spaces</title><title>Integral equations and operator theory</title><description>We give necessary conditions and sufficient conditions for sequences of reproducing kernels $(k_Θ(•, λ_n))_{n≥1}$ to be overcomplete in a given model space $K^p_Θ$ where $Θ$ is an inner function in $H^\infty$, $p ∈ (1,∞)$, and where $(λ_n)_{n≥1}$ is an infinite sequence of pairwise distinct points in the open unit disc. Under certain conditions on $Θ$ we obtain an exact characterization of overcompleteness. As a consequence we are able to describe the overcomplete exponential systems in $L^2(0, a)$.</description><subject>Mathematics</subject><issn>0378-620X</issn><issn>1420-8989</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNo9kNFKwzAUhoMoWKcP4F1vvYieJE2bXI6pmzgZOAXvQpqcaqVra7INfHs7K14dzs_3HzgfIZcMrhlAcRMBgAMFkJRlTFB2RBKWDYnSSh-TBEShaM7h7ZScxfg5wLzgeUJuV3sMrtv0DW6xxRjTrkrX-LXD1uHv8ox96PzO1e17-oihxSamdZs-dR6bdN3bATsnJ5VtIl78zQl5vb97mS3ocjV_mE2X1AnOt1QIwX0JkDuuVekLRMkyYLnySnqb6UpKKBAq6WVuK6dRlbnQZekyxz33WkzI1Xj3wzamD_XGhm_T2dospktzyGD4uACe7dnAspF1oYsxYPVfYGAOysyozAzKzEGZYeIHMdNeJA</recordid><startdate>200609</startdate><enddate>200609</enddate><creator>Chalendar, I.</creator><creator>Fricain, E.</creator><creator>Partington, J. R.</creator><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9929-7419</orcidid></search><sort><creationdate>200609</creationdate><title>Overcompleteness of Sequences of Reproducing Kernels in Model Spaces</title><author>Chalendar, I. ; Fricain, E. ; Partington, J. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-3332db006c298bd7ee5140168d85da49f5507e0f5d56afc9e8b639bbc4c2d2d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chalendar, I.</creatorcontrib><creatorcontrib>Fricain, E.</creatorcontrib><creatorcontrib>Partington, J. R.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Integral equations and operator theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chalendar, I.</au><au>Fricain, E.</au><au>Partington, J. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overcompleteness of Sequences of Reproducing Kernels in Model Spaces</atitle><jtitle>Integral equations and operator theory</jtitle><date>2006-09</date><risdate>2006</risdate><volume>56</volume><issue>1</issue><spage>45</spage><epage>56</epage><pages>45-56</pages><issn>0378-620X</issn><eissn>1420-8989</eissn><abstract>We give necessary conditions and sufficient conditions for sequences of reproducing kernels $(k_Θ(•, λ_n))_{n≥1}$ to be overcomplete in a given model space $K^p_Θ$ where $Θ$ is an inner function in $H^\infty$, $p ∈ (1,∞)$, and where $(λ_n)_{n≥1}$ is an infinite sequence of pairwise distinct points in the open unit disc. Under certain conditions on $Θ$ we obtain an exact characterization of overcompleteness. As a consequence we are able to describe the overcomplete exponential systems in $L^2(0, a)$.</abstract><pub>Springer Verlag</pub><doi>10.1007/s00020-005-1413-1</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9929-7419</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-620X
ispartof Integral equations and operator theory, 2006-09, Vol.56 (1), p.45-56
issn 0378-620X
1420-8989
language eng
recordid cdi_hal_primary_oai_HAL_hal_04207024v1
source Springer Nature - Complete Springer Journals
subjects Mathematics
title Overcompleteness of Sequences of Reproducing Kernels in Model Spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T04%3A43%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overcompleteness%20of%20Sequences%20of%20Reproducing%20Kernels%20in%20Model%20Spaces&rft.jtitle=Integral%20equations%20and%20operator%20theory&rft.au=Chalendar,%20I.&rft.date=2006-09&rft.volume=56&rft.issue=1&rft.spage=45&rft.epage=56&rft.pages=45-56&rft.issn=0378-620X&rft.eissn=1420-8989&rft_id=info:doi/10.1007/s00020-005-1413-1&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04207024v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true