Overcompleteness of Sequences of Reproducing Kernels in Model Spaces
We give necessary conditions and sufficient conditions for sequences of reproducing kernels $(k_Θ(•, λ_n))_{n≥1}$ to be overcomplete in a given model space $K^p_Θ$ where $Θ$ is an inner function in $H^\infty$, $p ∈ (1,∞)$, and where $(λ_n)_{n≥1}$ is an infinite sequence of pairwise distinct points i...
Gespeichert in:
Veröffentlicht in: | Integral equations and operator theory 2006-09, Vol.56 (1), p.45-56 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give necessary conditions and sufficient conditions for sequences of reproducing kernels $(k_Θ(•, λ_n))_{n≥1}$ to be overcomplete in a given model space $K^p_Θ$ where $Θ$ is an inner function in $H^\infty$, $p ∈ (1,∞)$, and where $(λ_n)_{n≥1}$ is an infinite sequence of pairwise distinct points in the open unit disc. Under certain conditions on $Θ$ we obtain an exact characterization of overcompleteness. As a consequence we are able to describe the overcomplete exponential systems in $L^2(0, a)$. |
---|---|
ISSN: | 0378-620X 1420-8989 |
DOI: | 10.1007/s00020-005-1413-1 |