Overcompleteness of Sequences of Reproducing Kernels in Model Spaces

We give necessary conditions and sufficient conditions for sequences of reproducing kernels $(k_Θ(•, λ_n))_{n≥1}$ to be overcomplete in a given model space $K^p_Θ$ where $Θ$ is an inner function in $H^\infty$, $p ∈ (1,∞)$, and where $(λ_n)_{n≥1}$ is an infinite sequence of pairwise distinct points i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integral equations and operator theory 2006-09, Vol.56 (1), p.45-56
Hauptverfasser: Chalendar, I., Fricain, E., Partington, J. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give necessary conditions and sufficient conditions for sequences of reproducing kernels $(k_Θ(•, λ_n))_{n≥1}$ to be overcomplete in a given model space $K^p_Θ$ where $Θ$ is an inner function in $H^\infty$, $p ∈ (1,∞)$, and where $(λ_n)_{n≥1}$ is an infinite sequence of pairwise distinct points in the open unit disc. Under certain conditions on $Θ$ we obtain an exact characterization of overcompleteness. As a consequence we are able to describe the overcomplete exponential systems in $L^2(0, a)$.
ISSN:0378-620X
1420-8989
DOI:10.1007/s00020-005-1413-1