Valuations on the character variety: Newton polytopes and residual Poisson bracket

We study the space of measured laminations ML on a closed surface from the valuative point of view. We introduce and study a notion of Newton polytope for an algebraic function on the character variety. We prove for instance that trace functions have unit coefficients at the extremal points of their...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometry & topology 2024-01, Vol.28 (2), p.593-625
Hauptverfasser: Marché, Julien, Simon, Christopher-Lloyd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the space of measured laminations ML on a closed surface from the valuative point of view. We introduce and study a notion of Newton polytope for an algebraic function on the character variety. We prove for instance that trace functions have unit coefficients at the extremal points of their Newton polytope. Then we provide a definition of tangent space at a valuation and show how the Goldman Poisson bracket on the character variety induces a symplectic structure on this valuative model for ML. Finally we identify this symplectic space with previous constructions due to Thurston and Bonahon.
ISSN:1465-3060
1364-0380
DOI:10.2140/gt.2024.28.593