Valuations on the character variety: Newton polytopes and residual Poisson bracket
We study the space of measured laminations ML on a closed surface from the valuative point of view. We introduce and study a notion of Newton polytope for an algebraic function on the character variety. We prove for instance that trace functions have unit coefficients at the extremal points of their...
Gespeichert in:
Veröffentlicht in: | Geometry & topology 2024-01, Vol.28 (2), p.593-625 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the space of measured laminations ML on a closed surface from the valuative point of view. We introduce and study a notion of Newton polytope for an algebraic function on the character variety. We prove for instance that trace functions have unit coefficients at the extremal points of their Newton polytope. Then we provide a definition of tangent space at a valuation and show how the Goldman Poisson bracket on the character variety induces a symplectic structure on this valuative model for ML. Finally we identify this symplectic space with previous constructions due to Thurston and Bonahon. |
---|---|
ISSN: | 1465-3060 1364-0380 |
DOI: | 10.2140/gt.2024.28.593 |