Two-way fixed effects and differences-in-differences estimators with several treatments

We study two-way-fixed-effects regressions (TWFE) with several treatment variables. Under a parallel trends assumption, we show that the coefficient on each treatment identifies a weighted sum of that treatment’s effect, with possibly negative weights, plus a weighted sum of the effects of the other...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2023-10, Vol.236 (2), p.105480, Article 105480
Hauptverfasser: de Chaisemartin, Clément, D’Haultfœuille, Xavier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study two-way-fixed-effects regressions (TWFE) with several treatment variables. Under a parallel trends assumption, we show that the coefficient on each treatment identifies a weighted sum of that treatment’s effect, with possibly negative weights, plus a weighted sum of the effects of the other treatments. Thus, those estimators are not robust to heterogeneous effects and may be contaminated by other treatments’ effects. We further show that omitting a treatment from the regression can actually reduce the estimator’s bias, unlike what would happen under constant treatment effects. We propose an alternative difference-in-differences estimator, robust to heterogeneous effects and immune to the contamination problem. In the application we consider, the TWFE regression identifies a highly non-convex combination of effects, with large contamination weights, and one of its coefficients significantly differs from our heterogeneity-robust estimator.
ISSN:0304-4076
1872-6895
DOI:10.1016/j.jeconom.2023.105480