A physical model of the twinning-induced plasticity effect in a high manganese austenitic steel

The steel Fe–22 wt.% Mn–0.6 wt.% C exhibits a low stacking fault energy (SFE) at room temperature. This rather low value promotes mechanical twinning along with strain which is in competition with dislocation gliding, the so called twinning-induced plasticity effect. The proposed modeling of the mec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2004-12, Vol.387, p.143-147
Hauptverfasser: Allain, S., Chateau, J.-P., Bouaziz, O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The steel Fe–22 wt.% Mn–0.6 wt.% C exhibits a low stacking fault energy (SFE) at room temperature. This rather low value promotes mechanical twinning along with strain which is in competition with dislocation gliding, the so called twinning-induced plasticity effect. The proposed modeling of the mechanical behavior introduces the formation of mechanical microtwins in a viscoplasticity framework based on dislocation glide at the mesoscopic scale in the case of a simple tensile test. The important parameter is the mean free path of the dislocations between twins, whose reduction explains the high hardening rate (by a dynamical Hall–Petch-like effect). It takes into account the typical organization of microtwins observed in electron microscopy (geometrical organization by using a twin-slip intersection matrix). To take into account the polycrystalline disorder, the macroscopic flow stress is calculated by assuming that the deformation work is equal in each grain for each strain step. This model gives an intermediate rule between Taylor and Sachs approximations and is simpler to compute than self-consistent methods. The parameters for gliding are first fitted on results at intermediate temperatures (without twinning), and the whole modeling is then correlated at room temperature. The simulated results (microstructure and mechanical properties) are in good agreement with experience.
ISSN:0921-5093
1873-4936
DOI:10.1016/j.msea.2004.01.060