No-Regret Caching via Online Mirror Descent

We study an online caching problem in which requests can be served by a local cache to avoid retrieval costs from a remote server. The cache can update its state after a batch of requests and store an arbitrarily small fraction of each file. We study no-regret algorithms based on Online Mirror Desce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on modeling and performance evaluation of computing systems 2023-08, Vol.8 (4), p.1-32
Hauptverfasser: Salem, Tareq Si, Neglia, Giovanni, Ioannidis, Stratis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study an online caching problem in which requests can be served by a local cache to avoid retrieval costs from a remote server. The cache can update its state after a batch of requests and store an arbitrarily small fraction of each file. We study no-regret algorithms based on Online Mirror Descent (OMD) strategies. We show that bounds for the regret crucially depend on the diversity of the request process, provided by the diversity ratio R/h, where R is the size of the batch, and h is the maximum multiplicity of a request in a given batch. We characterize the optimality of OMD caching policies w.r.t. regret under different diversity regimes. We also prove that, when the cache must store the entire file, rather than a fraction, OMD strategies can be coupled with a randomized rounding scheme that preserves regret guarantees, even when update costs cannot be neglected. We provide a formal characterization of the rounding problem through optimal transport theory, and moreover we propose a computationally efficient randomized rounding scheme.
ISSN:2376-3639
2376-3647
DOI:10.1145/3605209