Population genetic structure determines speed of kill and occlusion body production in Spodoptera frugiperda multiple nucleopolyhedrovirus

A Nicaraguan isolate of Spodoptera frugiperda multiple nucleopolyhedrovirus (SfNIC) survives as a complex mixture of genotypes (named A to I). The speed of kill, time-mortality distribution, and occlusion body (OB) production of single genotypes (A, B and F) and co-occluded mixtures of genotypes, in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological control 2008-03, Vol.44 (3), p.321-330
Hauptverfasser: Simón, Oihane, Williams, Trevor, López-Ferber, Miguel, Taulemesse, Jean-Marie, Caballero, Primitivo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A Nicaraguan isolate of Spodoptera frugiperda multiple nucleopolyhedrovirus (SfNIC) survives as a complex mixture of genotypes (named A to I). The speed of kill, time-mortality distribution, and occlusion body (OB) production of single genotypes (A, B and F) and co-occluded mixtures of genotypes, in a 75% + 25% ratio, were compared to determine the contribution of each genotype to the transmissibility of the viral population. Pure genotypes differed markedly in their speed of kill in second instar S. frugiperda. The speed of kill of SfNIC was attenuated compared to that of the dominant genotype B, indicating that interactions involving two or more genotypes likely determine host killing traits in the virus population. Genotypes A, F and defective genotype C, had no significant effects on the distribution of insect deaths over time when present as minority components in mixtures comprising 75% of genotype B. Similarly, the mortality pattern over time of insects infected by genotype F, the fastest-killing genotype tested, was not affected by the presence of genotypes A or C. Semi-quantitative PCR studies indicated that the genetic composition did not differ significantly between SfNIC-infected insects that died soon (67 h) or late (139 h) after inoculation, suggesting that stability in genotypic composition is important for virus survival. Median OB production per insect was correlated with mean time to death so that attenuated speed of kill of SfNIC resulted in high OB yields. We conclude that (i) minority genotypes play a functional role in determining the timing of mortality of infected hosts and (ii) the genotypic structure of the virus population is stably maintained to maximize the likelihood of survival.
ISSN:1049-9644
1090-2112
DOI:10.1016/j.biocontrol.2007.12.005