Sustainable One-Pot Synthesis and Polycondensation of a Levoglucosenone-Derived Cyclic Acetal Diol
The already described one-pot two-step hydration/reduction of levoglucosenone (LGO) into (1R,2S,5R)-6,8-dioxabicyclo[3.2.1]octane-2,4-diol (HO-LGOL) was improved by replacing 50 mol % of Et3N by 5 mol % of K3PO4, a more sustainable base. The sterically hindered diol was then subjected to polyconde...
Gespeichert in:
Veröffentlicht in: | ACS sustainable chemistry & engineering 2022-08, Vol.10 (31), p.10132-10143 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The already described one-pot two-step hydration/reduction of levoglucosenone (LGO) into (1R,2S,5R)-6,8-dioxabicyclo[3.2.1]octane-2,4-diol (HO-LGOL) was improved by replacing 50 mol % of Et3N by 5 mol % of K3PO4, a more sustainable base. The sterically hindered diol was then subjected to polycondensations with aliphatic comonomers to prepare new bio-based polyesters that exhibit glass transition (T g) values between 12 and 54 °C and high thermal stability greater than 200 °C. Two different strategies were implemented to perform the polymerizations: (1) utilization of aliphatic diacyl chlorides, or (2) a method involving aliphatic diethyl esters in the presence of a metal catalyst. These methods were then subjected to life cycle assessment to study their environmental impacts. |
---|---|
ISSN: | 2168-0485 2168-0485 |
DOI: | 10.1021/acssuschemeng.2c01362 |