Output regulation of stochastic sampled-data systems with post-processing internal model

This paper deals with the output regulation problem (ORP) of a linear time-invariant (LTI) system in the presence of sporadically sampled measurement streams with the inter-sampling intervals following a stochastic process. Under such sporadically available measurement streams, a regulator consistin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of control 2023-11, Vol.74 (November), p.100866, Article 100866
Hauptverfasser: Basu, Himadri, Ferrante, Francesco, Fiacchini, Mirko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with the output regulation problem (ORP) of a linear time-invariant (LTI) system in the presence of sporadically sampled measurement streams with the inter-sampling intervals following a stochastic process. Under such sporadically available measurement streams, a regulator consisting of a hybrid observer, continuous-time post-processing internal model, and stabilizer are proposed, which resets with the arrival of new measurements. The resulting system exhibits a deterministic behavior except for the jumps that occur at random sampling times and therefore the overall closed-loop system can be categorized as a piecewise deterministic Markov process (PDMP). In existing works on ORPs with aperiodic sampling, the requirement of boundedness on inter-sampling intervals precludes extending the solution to the random sampling intervals with possibly unbounded support. Using the Lyapunov-like theorem for the stability analysis of stochastic systems, we offer sufficient conditions to ensure that the overall closed-loop system is mean exponentially stable (MES) and the objectives of the ORP are achieved under stochastic sampling of measurement streams. The resulting LMI conditions lead to a numerically tractable design of the hybrid regulator. Finally, with the help of an illustrative example, the effectiveness of the theoretical results are verified.
ISSN:0947-3580
1435-5671
DOI:10.1016/j.ejcon.2023.100866