Effective homology and periods of complex projective hypersurfaces
We introduce a new algorithm for computing the periods of a smooth complex projective hypersurface. The algorithm intertwines with a new method for computing an explicit basis of the singular homology of the hypersurface. It is based on Picard–Lefschetz theory and relies on the computation of the mo...
Gespeichert in:
Veröffentlicht in: | Mathematics of computation 2024-03, Vol.93, p.2985-3025 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a new algorithm for computing the periods of a smooth complex projective hypersurface. The algorithm intertwines with a new method for computing an explicit basis of the singular homology of the hypersurface. It is based on Picard–Lefschetz theory and relies on the computation of the monodromy action induced by a one-parameter family of hyperplane sections on the homology of a given section.
We provide a SageMath implementation. For example, on a laptop, it makes it possible to compute the periods of a smooth complex quartic surface with hundreds of digits of precision in typically an hour. |
---|---|
ISSN: | 0025-5718 1088-6842 |
DOI: | 10.1090/mcom/3947 |