Uniform perfectness for Interval Exchange Transformations with or without Flips

Let G be the group of all Interval Exchange Transformations. Results of Arnoux-Fathi ([Arn81b]), Sah ([Sah81]) and Vorobets ([Vor17]) state that G 0 the subgroup of G generated by its commutators is simple. In ([Arn81b]), Arnoux proved that the group G of all Interval Exchange Transformations with f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales de l'Institut Fourier 2022-09, Vol.72 (4), p.1477-1501
Hauptverfasser: Guelman, Nancy, Liousse, Isabelle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be the group of all Interval Exchange Transformations. Results of Arnoux-Fathi ([Arn81b]), Sah ([Sah81]) and Vorobets ([Vor17]) state that G 0 the subgroup of G generated by its commutators is simple. In ([Arn81b]), Arnoux proved that the group G of all Interval Exchange Transformations with flips is simple. We establish that every element of G has a commutator length not exceeding 6. Moreover, we give conditions on G that guarantee that the commutator lengths of the elements of G 0 are uniformly bounded, and in this case for any g ∈ G 0 this length is at most 5. As analogous arguments work for the involution length in G, we add an appendix whose purpose is to prove that every element of G has an involution length not exceeding 12.
ISSN:1777-5310
0373-0956
1777-5310
DOI:10.5802/aif.3502