Faithful effective-one-body waveform of small-mass-ratio coalescing black hole binaries: The eccentric, nonspinning case
We present a new effective-one-body (EOB) waveform for eccentric, nonspinning, binaries in the extreme mass ratio limit, with initial eccentricities up to $0.95$. The EOB analytical waveform, that includes noncircular corrections up to second post-Newtonian order, is completed by a phenomenological...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2023-10, Vol.108 (8), Article 084037 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a new effective-one-body (EOB) waveform for eccentric, nonspinning, binaries in the extreme mass ratio limit, with initial eccentricities up to $0.95$. The EOB analytical waveform, that includes noncircular corrections up to second post-Newtonian order, is completed by a phenomenological ringdown model that is informed by Regge-Wheeler-Zerilli (RWZ) type waveforms generated by a point-particle source. This model notably includes the beating between positive and negative frequency quasi-normal-modes (QNMs). We analyze various prescriptions to faithfully complete the analytical EOB waveform in the transition from plunge to merger. In particular, we systematically explore the effect of: (i) the generic Newtonian prefactor; (ii) next-to-quasi-circular (NQC) corrections to amplitude and phase; (iii) the point were NQC corrections are determined; (iv) the ringdown attachment point. This yields EOB/RWZ quadrupolar phase differences through merger and ringdown $\lesssim 0.01$~rad for the quasi-circular case and $\lesssim 0.05$~rad for the eccentric case. Higher modes are also modeled up to the $\ell=m=5$ multipole. We finally discuss the excitation of the QNMs and present a heuristic model to motivate it in correlation with the presence of a point-particle source. |
---|---|
ISSN: | 2470-0010 2470-0029 |
DOI: | 10.1103/PhysRevD.108.084037 |