Combining the Power of Biocatalysis and Membrane-Based Purification To Access NADP
In this study, using a model solution corresponding to the final medium composition of the NADP+ enzymatic production, we present for the first time a sustainable and simple alternative membrane-based filtration process that readily provides NADP+ in high purity. A membrane selection was first perfo...
Gespeichert in:
Veröffentlicht in: | ACS sustainable chemistry & engineering 2023-03, Vol.11 (12), p.4662-4669 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, using a model solution corresponding to the final medium composition of the NADP+ enzymatic production, we present for the first time a sustainable and simple alternative membrane-based filtration process that readily provides NADP+ in high purity. A membrane selection was first performed, and the GE membrane (Suez Water Technologies & Solutions (USA)) was shown to provide the best NADP+ retention rate >80% at 4 bar. An enzymatic strategy based on the addition of a commercial ATP diphosphohydrolase (apyrase from potatoes) to the model solution significantly simplified the composition of the medium, resulting in a very good discrimination profile between NADP+ and AMP retention (69.3% gap) on the one side, and NADP+ and adenine (87.5% gap) on the other. These data allowed to predict a profile of purity and loss of NADP+ as a function of diafiltration volume (DV). According to these predictions, a >90% purity could be achieved after only 4 DV, demonstrating that this membrane-based purification method achieves a very high purity rate of NADP+ while being competitive compared to the other conventional methods currently used. |
---|---|
ISSN: | 2168-0485 2168-0485 |
DOI: | 10.1021/acssuschemeng.2c06688 |