Molecular Basis for Feedback Regulation of Bile Acid Synthesis by Nuclear Receptors

The catabolism of cholesterol into bile acids is regulated by oxysterols and bile acids, which induce or repress transcription of the pathway's rate-limiting enzyme cholesterol 7α-hydroxylase (CYP7A1). The nuclear receptor LXRα binds oxysterols and mediates feed-forward induction. Here, we show...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell 2000-09, Vol.6 (3), p.507-515
Hauptverfasser: Lu, Timothy T., Makishima, Makoto, Repa, Joyce J., Schoonjans, Kristina, Kerr, Thomas A., Auwerx, Johan, Mangelsdorf, David J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The catabolism of cholesterol into bile acids is regulated by oxysterols and bile acids, which induce or repress transcription of the pathway's rate-limiting enzyme cholesterol 7α-hydroxylase (CYP7A1). The nuclear receptor LXRα binds oxysterols and mediates feed-forward induction. Here, we show that repression is coordinately regulated by a triumvirate of nuclear receptors, including the bile acid receptor, FXR; the promoter-specific activator, LRH-1; and the promoter-specific repressor, SHP. Feedback repression of CYP7A1 is accomplished by the binding of bile acids to FXR, which leads to transcription of SHP. Elevated SHP protein then inactivates LRH-1 by forming a heterodimeric complex that leads to promoter-specific repression of both CYP7A1 and SHP. These results reveal an elaborate autoregulatory cascade mediated by nuclear receptors for the maintenance of hepatic cholesterol catabolism.
ISSN:1097-2765
1097-4164
DOI:10.1016/S1097-2765(00)00050-2