Generation and verification of learned stochastic automata using k-NN and statistical model checking

Deriving an accurate behavior model from historical data of a black box for verification and feature forecasting is seen by industry as a challenging issue especially for a large featured dataset. This paper focuses on an alternative approach where stochastic automata can be learned from time-series...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied intelligence (Dordrecht, Netherlands) Netherlands), 2022, Vol.52 (8), p.8874-8894
Hauptverfasser: Baouya, Abdelhakim, Chehida, Salim, Ouchani, Samir, Bensalem, Saddek, Bozga, Marius
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8894
container_issue 8
container_start_page 8874
container_title Applied intelligence (Dordrecht, Netherlands)
container_volume 52
creator Baouya, Abdelhakim
Chehida, Salim
Ouchani, Samir
Bensalem, Saddek
Bozga, Marius
description Deriving an accurate behavior model from historical data of a black box for verification and feature forecasting is seen by industry as a challenging issue especially for a large featured dataset. This paper focuses on an alternative approach where stochastic automata can be learned from time-series observations captured from a set of deployed sensors. The main advantage offered by such techniques is that they enable analysis and forecasting from a formal model instead of traditional learning methods. We perform statistical model checking to analyze the learned automata by expressing temporal properties. For this purpose, we consider a critical water infrastructure that provides a scenario based on a set of input and output values of heterogeneous sensors to regulate the dam spill gates. The method derives a consistent approximate model with traces collected over thirty years. The experiments show that the model provides not only an approximation of the desired output of a feature value but, also, forecasts the ebb and flow of the sensed data.
doi_str_mv 10.1007/s10489-021-02884-4
format Article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04094178v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04094178v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_04094178v13</originalsourceid><addsrcrecordid>eNqVi7FOwzAURS1EpQbKD3R6K4Ppc2PqeEQI6IA6dWCLnhyHmDo2st1K_D0p8AMMV1c6OoexpcA7gahWWaBsNMe1mNY0kssLVol7VXMltbpkFeq15JuNfpuzq5w_ELGuUVSse7HBJiouBqDQwckm1zvzC2IP3lIKtoNcohkoF2eAjiWOVAiO2YV3OPDd7ifNZarOBnkYY2c9mMGaw-Qs2Kwnn-3N31-z2-en_eOWD-Tbz-RGSl9tJNduH17bM0OJWgrVnET9H_cblxhRcg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Generation and verification of learned stochastic automata using k-NN and statistical model checking</title><source>SpringerLink Journals - AutoHoldings</source><creator>Baouya, Abdelhakim ; Chehida, Salim ; Ouchani, Samir ; Bensalem, Saddek ; Bozga, Marius</creator><creatorcontrib>Baouya, Abdelhakim ; Chehida, Salim ; Ouchani, Samir ; Bensalem, Saddek ; Bozga, Marius</creatorcontrib><description>Deriving an accurate behavior model from historical data of a black box for verification and feature forecasting is seen by industry as a challenging issue especially for a large featured dataset. This paper focuses on an alternative approach where stochastic automata can be learned from time-series observations captured from a set of deployed sensors. The main advantage offered by such techniques is that they enable analysis and forecasting from a formal model instead of traditional learning methods. We perform statistical model checking to analyze the learned automata by expressing temporal properties. For this purpose, we consider a critical water infrastructure that provides a scenario based on a set of input and output values of heterogeneous sensors to regulate the dam spill gates. The method derives a consistent approximate model with traces collected over thirty years. The experiments show that the model provides not only an approximation of the desired output of a feature value but, also, forecasts the ebb and flow of the sensed data.</description><identifier>ISSN: 0924-669X</identifier><identifier>EISSN: 1573-7497</identifier><identifier>DOI: 10.1007/s10489-021-02884-4</identifier><language>eng</language><publisher>Springer Verlag</publisher><subject>Computer Science ; Machine Learning</subject><ispartof>Applied intelligence (Dordrecht, Netherlands), 2022, Vol.52 (8), p.8874-8894</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4412-5684 ; 0000-0002-7997-8225 ; 0000-0003-2182-7501 ; 0000-0002-7997-8225 ; 0000-0003-2182-7501 ; 0000-0003-4412-5684</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04094178$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Baouya, Abdelhakim</creatorcontrib><creatorcontrib>Chehida, Salim</creatorcontrib><creatorcontrib>Ouchani, Samir</creatorcontrib><creatorcontrib>Bensalem, Saddek</creatorcontrib><creatorcontrib>Bozga, Marius</creatorcontrib><title>Generation and verification of learned stochastic automata using k-NN and statistical model checking</title><title>Applied intelligence (Dordrecht, Netherlands)</title><description>Deriving an accurate behavior model from historical data of a black box for verification and feature forecasting is seen by industry as a challenging issue especially for a large featured dataset. This paper focuses on an alternative approach where stochastic automata can be learned from time-series observations captured from a set of deployed sensors. The main advantage offered by such techniques is that they enable analysis and forecasting from a formal model instead of traditional learning methods. We perform statistical model checking to analyze the learned automata by expressing temporal properties. For this purpose, we consider a critical water infrastructure that provides a scenario based on a set of input and output values of heterogeneous sensors to regulate the dam spill gates. The method derives a consistent approximate model with traces collected over thirty years. The experiments show that the model provides not only an approximation of the desired output of a feature value but, also, forecasts the ebb and flow of the sensed data.</description><subject>Computer Science</subject><subject>Machine Learning</subject><issn>0924-669X</issn><issn>1573-7497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqVi7FOwzAURS1EpQbKD3R6K4Ppc2PqeEQI6IA6dWCLnhyHmDo2st1K_D0p8AMMV1c6OoexpcA7gahWWaBsNMe1mNY0kssLVol7VXMltbpkFeq15JuNfpuzq5w_ELGuUVSse7HBJiouBqDQwckm1zvzC2IP3lIKtoNcohkoF2eAjiWOVAiO2YV3OPDd7ifNZarOBnkYY2c9mMGaw-Qs2Kwnn-3N31-z2-en_eOWD-Tbz-RGSl9tJNduH17bM0OJWgrVnET9H_cblxhRcg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Baouya, Abdelhakim</creator><creator>Chehida, Salim</creator><creator>Ouchani, Samir</creator><creator>Bensalem, Saddek</creator><creator>Bozga, Marius</creator><general>Springer Verlag</general><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4412-5684</orcidid><orcidid>https://orcid.org/0000-0002-7997-8225</orcidid><orcidid>https://orcid.org/0000-0003-2182-7501</orcidid><orcidid>https://orcid.org/0000-0002-7997-8225</orcidid><orcidid>https://orcid.org/0000-0003-2182-7501</orcidid><orcidid>https://orcid.org/0000-0003-4412-5684</orcidid></search><sort><creationdate>2022</creationdate><title>Generation and verification of learned stochastic automata using k-NN and statistical model checking</title><author>Baouya, Abdelhakim ; Chehida, Salim ; Ouchani, Samir ; Bensalem, Saddek ; Bozga, Marius</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_04094178v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computer Science</topic><topic>Machine Learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baouya, Abdelhakim</creatorcontrib><creatorcontrib>Chehida, Salim</creatorcontrib><creatorcontrib>Ouchani, Samir</creatorcontrib><creatorcontrib>Bensalem, Saddek</creatorcontrib><creatorcontrib>Bozga, Marius</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baouya, Abdelhakim</au><au>Chehida, Salim</au><au>Ouchani, Samir</au><au>Bensalem, Saddek</au><au>Bozga, Marius</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation and verification of learned stochastic automata using k-NN and statistical model checking</atitle><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle><date>2022</date><risdate>2022</risdate><volume>52</volume><issue>8</issue><spage>8874</spage><epage>8894</epage><pages>8874-8894</pages><issn>0924-669X</issn><eissn>1573-7497</eissn><abstract>Deriving an accurate behavior model from historical data of a black box for verification and feature forecasting is seen by industry as a challenging issue especially for a large featured dataset. This paper focuses on an alternative approach where stochastic automata can be learned from time-series observations captured from a set of deployed sensors. The main advantage offered by such techniques is that they enable analysis and forecasting from a formal model instead of traditional learning methods. We perform statistical model checking to analyze the learned automata by expressing temporal properties. For this purpose, we consider a critical water infrastructure that provides a scenario based on a set of input and output values of heterogeneous sensors to regulate the dam spill gates. The method derives a consistent approximate model with traces collected over thirty years. The experiments show that the model provides not only an approximation of the desired output of a feature value but, also, forecasts the ebb and flow of the sensed data.</abstract><pub>Springer Verlag</pub><doi>10.1007/s10489-021-02884-4</doi><orcidid>https://orcid.org/0000-0003-4412-5684</orcidid><orcidid>https://orcid.org/0000-0002-7997-8225</orcidid><orcidid>https://orcid.org/0000-0003-2182-7501</orcidid><orcidid>https://orcid.org/0000-0002-7997-8225</orcidid><orcidid>https://orcid.org/0000-0003-2182-7501</orcidid><orcidid>https://orcid.org/0000-0003-4412-5684</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-669X
ispartof Applied intelligence (Dordrecht, Netherlands), 2022, Vol.52 (8), p.8874-8894
issn 0924-669X
1573-7497
language eng
recordid cdi_hal_primary_oai_HAL_hal_04094178v1
source SpringerLink Journals - AutoHoldings
subjects Computer Science
Machine Learning
title Generation and verification of learned stochastic automata using k-NN and statistical model checking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A38%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20and%20verification%20of%20learned%20stochastic%20automata%20using%20k-NN%20and%20statistical%20model%20checking&rft.jtitle=Applied%20intelligence%20(Dordrecht,%20Netherlands)&rft.au=Baouya,%20Abdelhakim&rft.date=2022&rft.volume=52&rft.issue=8&rft.spage=8874&rft.epage=8894&rft.pages=8874-8894&rft.issn=0924-669X&rft.eissn=1573-7497&rft_id=info:doi/10.1007/s10489-021-02884-4&rft_dat=%3Chal%3Eoai_HAL_hal_04094178v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true