Generation and verification of learned stochastic automata using k-NN and statistical model checking

Deriving an accurate behavior model from historical data of a black box for verification and feature forecasting is seen by industry as a challenging issue especially for a large featured dataset. This paper focuses on an alternative approach where stochastic automata can be learned from time-series...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied intelligence (Dordrecht, Netherlands) Netherlands), 2022, Vol.52 (8), p.8874-8894
Hauptverfasser: Baouya, Abdelhakim, Chehida, Salim, Ouchani, Samir, Bensalem, Saddek, Bozga, Marius
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Deriving an accurate behavior model from historical data of a black box for verification and feature forecasting is seen by industry as a challenging issue especially for a large featured dataset. This paper focuses on an alternative approach where stochastic automata can be learned from time-series observations captured from a set of deployed sensors. The main advantage offered by such techniques is that they enable analysis and forecasting from a formal model instead of traditional learning methods. We perform statistical model checking to analyze the learned automata by expressing temporal properties. For this purpose, we consider a critical water infrastructure that provides a scenario based on a set of input and output values of heterogeneous sensors to regulate the dam spill gates. The method derives a consistent approximate model with traces collected over thirty years. The experiments show that the model provides not only an approximation of the desired output of a feature value but, also, forecasts the ebb and flow of the sensed data.
ISSN:0924-669X
1573-7497
DOI:10.1007/s10489-021-02884-4