Generation and verification of learned stochastic automata using k-NN and statistical model checking
Deriving an accurate behavior model from historical data of a black box for verification and feature forecasting is seen by industry as a challenging issue especially for a large featured dataset. This paper focuses on an alternative approach where stochastic automata can be learned from time-series...
Gespeichert in:
Veröffentlicht in: | Applied intelligence (Dordrecht, Netherlands) Netherlands), 2022, Vol.52 (8), p.8874-8894 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Deriving an accurate behavior model from historical data of a black box for verification and feature forecasting is seen by industry as a challenging issue especially for a large featured dataset. This paper focuses on an alternative approach where stochastic automata can be learned from time-series observations captured from a set of deployed sensors. The main advantage offered by such techniques is that they enable analysis and forecasting from a formal model instead of traditional learning methods. We perform statistical model checking to analyze the learned automata by expressing temporal properties. For this purpose, we consider a critical water infrastructure that provides a scenario based on a set of input and output values of heterogeneous sensors to regulate the dam spill gates. The method derives a consistent approximate model with traces collected over thirty years. The experiments show that the model provides not only an approximation of the desired output of a feature value but, also, forecasts the ebb and flow of the sensed data. |
---|---|
ISSN: | 0924-669X 1573-7497 |
DOI: | 10.1007/s10489-021-02884-4 |